Skip to main content

Clearance Concept in Renal Physiology

  • Chapter
Renal Physiology

Part of the book series: People and Ideas ((PEOPL))

Abstract

In 1928 Donald D. Van Slyke (see Fig. 2) and associates (25) introduced the word “clearance” to indicate the urinary output of urea per minute relative to its concentration in blood, defining it as the volume of blood completely “cleared” of urea per minute when urine flow exceeds 2 ml/min. Fifteen years later Homer W. Smith [see Fig. 6; (42)] wrote: “In my opinion this word has been more useful to renal physiology than all the equations ever written. In recent years,” he added, “it has broken loose from the excretion of urea and, taking conceptual wings, has become a generalized notion applicable to all aspects of renal excretion.” Smith’s admittedly somewhat startling assertion has found its justification in major contributions to our understanding of kidney function that can be ascribed in part to attention focused by an apt and useful term on a potentially effective new methodology and on the body of concepts from which it has emerged. The fundamental concept itself can be traced, in fact, as far back as July 1870 to a meeting of the Physikalisch-Medizinische Gesellschaft in Würzburg at which Professor Adolf Fick (see Fig. 4) presented a very short paper outlining a method of measuring cardiac output in dogs (14a). Fick’s method depended on much the same mathematical formulation introduced by Van Slyke, but it was used for measuring carbon dioxide clearance by the lungs and, in doing so, for evaluating total blood flow (or cardiac output) through the lungs. In this seemingly ambiguous statement, that clearance measures simultaneously an excretion of a solute and a volume of fluid flow, lies a source of some confusion in the understanding and application of the clearance principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Addis, T. The renal lesion in chronic Bright’s disease. Am. J. Med. 176: 617–637, 1928.

    Article  Google Scholar 

  2. Addis, T., and C. K. Watanabe. The rate of urea excretion—first paper. A criticism of Ambard and Weill’s laws of urea excretion. J. Biol. Chem. 24: 203–220, 1916.

    CAS  Google Scholar 

  3. Ambard, L. Lois numériques de la sécrétion de l’urée. J. Physiol. Pathol. Gen. 12: 209–219, 1910.

    Google Scholar 

  4. Ambard, L., and A. Weill. Les lois numériques de la sécrétion rénale de l’urée et du chlorure de sodium. J. Physiol. Pathol. Gen. 14: 753765, 1912.

    Google Scholar 

  5. Austin, J. H., E. Stillman, and D. D. Van Slyke. Factors governing the excretion rate of urea. J. Biol. Chem. 46: 91–112, 1921.

    CAS  Google Scholar 

  6. Beer, J. Trois figures médicales de Strasbourg. Aesculape 29: 117–119, 1939.

    Google Scholar 

  7. Bright, R. Cases and observations, illustrative of renal disease accompanied with the secretion of albuminous urine. In: Original Papers of Richard Bright on Renal Disease, edited by A. R. Osman. London: Oxford Univ. Press, 1937, p. 93–131.

    Google Scholar 

  8. Chasis, H. History of collaboration by Department of Physiology at New York University School of Medicine. Physiologist 26: 64–70, 1983.

    PubMed  CAS  Google Scholar 

  9. a.ChasIS, H., and W. Goldring (editors). Homer William Smith, Sc.D.: His Scientific and Literary Achievements. New York: New York Univ. Press, 1965.

    Google Scholar 

  10. Cushny, A. R. The Secretion of Urine. London: Longmans, Green, 1917, p. 54.

    Google Scholar 

  11. Dale, H. H. Arthur Robertson Cushny, 1866–1926. Proc. R. Soc. Lond. B Biol. Sci. 100: xix-xxvii, 1926.

    Google Scholar 

  12. Fick, A. Compendium der Physiologie des Menschen ( 3rd ed. ). Vienna: Braumuller, 1882, p. 283.

    Google Scholar 

  13. FoLin, O., and W. Denis. New methods for the determination of total non-protein nitrogen, urea and ammonium in blood. J. Biol. Chem. 11: 527–536, 1912.

    Google Scholar 

  14. Frey, M. von. Adolf Fick-Gedächtnisrede mit einem Verzeichnis von Adolf Ficks Schriften. Sitzungsber. Phys. Med. Wuerzburg 5: 65–80, 1901.

    Google Scholar 

  15. GRÜTzner, P. Zum Andenken an Rudolf Heidenhain. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 72: 221–265, 1898.

    Google Scholar 

  16. a.Hamilton, W. F., and D. W. Richards. The output of the heart. In: Circulation of the Blood: Men and Ideas, edited by A. P. Fishman and D. W. Richards. New York: Oxford Univ. Press, 1964, p. 96.

    Google Scholar 

  17. Hastings, A. B. Donald Dexter Van Slyke, 1883–1971, Managing Editor 1914–1925. J. Biol. Chem. 247: 1635–1640, 1972.

    Google Scholar 

  18. Heidenhain, R. Versuche über den Vorgang der Harnabsonderung. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 9: 1–27, 1874.

    Article  Google Scholar 

  19. Heidenhain, R. Absonderungsvorgaenge. Sechster Abschnitt. Die Harnabsonderung (Viertes Capitel. Die Absonderung der festen Harnbestandteile). In: Handbuch der Physiologie. Fünfter Teil, edited by L. Hermann. Leipzig, Germany: Vogel, 1883, p. 341–343.

    Google Scholar 

  20. Marshall, E. K., JR. A rapid clinical method for the estimation of urea in urine. J. Biol. Chem. 14: 283–296, 1913.

    CAS  Google Scholar 

  21. Marshall, E. K., JR., and M. M. Crane. The secretory function of the renal tubules. Am. J. Physiol. 70: 465–488, 1924.

    CAS  Google Scholar 

  22. Marshall, E. K., JR., and D. M. Davis. Urea: its distribution in and elimination from the body. J. Biol. Chem. 18: 53–80, 1914.

    CAS  Google Scholar 

  23. Mayrs, E. B. The relative excretion of urea and some other constituents of the urine. J. Physiol. Lond. 56: 58–68, 1922.

    PubMed  CAS  Google Scholar 

  24. Mayrs, E. B., and J. M. Watt. Renal blood-flow and glomerular filtration. J. Physiol. Lond. 56: 120–124, 1922.

    PubMed  CAS  Google Scholar 

  25. Mclean, F. C. The numerical laws governing the rate of excretion of urea and chlorides in man. I. An index of urea excretion and the normal excretion of urea and chlorides. J. Exp. Med. 22: 212–236, 1915.

    Article  CAS  Google Scholar 

  26. Mclean, F. C. Physiology and medicine: a transition period. Annu. Rev. Physiol. 22: 1–16, 1960.

    Article  Google Scholar 

  27. Moeller, E., J. F. Mcintosh, and D. D. Van Slyke. Studies of urea excretion. II. Relationship between urine volume and the rate of urea excretion by normal adults. J. Clin. Invest. 6: 427–465, 1928.

    Article  Google Scholar 

  28. Mudge, G. H., W. O. Berndt, and H. Valtin. Tubular transport of urea, glucose, phosphate, uric acid, sulfate, and thiosulfate. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, sect. 8, chapt. 19, p. 587–652.

    Google Scholar 

  29. NI, T.-G., and P. B. Rehberg. On the mechanism of sugar excretion. I. Glucose. Biochem. J. 24: 1039–1046, 1930.

    PubMed  CAS  Google Scholar 

  30. PrrTs, R. F. Physiology of the Kidney and Body Fluids. Chicago, IL: Year Book, 1963.

    Google Scholar 

  31. Pirrs, R. F. Homer William Smith—January 2, 1895–March 25, 1962. Biogr. Mem. Natl. Acad. Sci. 39: 445–470, 1967.

    Google Scholar 

  32. Rehberg, P. B. Studies on kidney function. I. The rate of filtration and reabsorption in the human kidney. Biochem. J. 20: 447–460, 1926.

    Google Scholar 

  33. Rehberg, P. B. The filtration reabsorption theory of kidney function and its use in the clinic. In: The Kidney in Health and Disease, edited by H. Berglund and G. Medes. Philadelphia, PA: Lea and Febiger, 1935, p. 7391.

    Google Scholar 

  34. Rothschuh, K. E. Geschichte der Physiologie. Berlin: Springer-Verlag, 1953, p. 124.

    Book  Google Scholar 

  35. Rothschuh, K. E. Geschichte der Physiologie. Berlin: Springer-Verlag, 1953, p. 150.

    Book  Google Scholar 

  36. Rothschuh, K. E. Geschichte der Physiologie. Berlin: Springer-Verlag, 1953, p. 151.

    Book  Google Scholar 

  37. Schuster, V. L., and D. W. Seldin. Renal clearance. In: The Kidney, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 365–395.

    Google Scholar 

  38. Shannon, J. A. Renal tubular excretion. Physiol. Rev. 19: 63–93, 1939.

    Google Scholar 

  39. Shannon, J. A., and S. Fisher. Renal tubular reabsorption of glucose in the normal dog. Am. J. Physiol. 122: 765–774, 1938.

    CAS  Google Scholar 

  40. Smith, H. W. The excretion of the non-metabolized sugars in the dogfish, the dog, and man. In: The Kidney in Health and Disease, edited by H. Berglund and G. Medes. Philadelphia, PA: Lea and Febiger, 1935, p. 92–110.

    Google Scholar 

  41. Smith, H. W. The Physiology of the Kidney. New York: Oxford Univ. Press, 1937, p. 25.

    Google Scholar 

  42. Smith, H. W. Newer methods of study of renal function in man. In: Lectures on the Kidney. Lawrence, KS: Univ. of Kansas, Extension Div., 1943, p. 39.

    Google Scholar 

  43. Smith, H. W. Renal physiology between two wars. In: Lectures on the Kidney. Lawrence, KS: Univ. of Kansas, Extension Div., 1943, p. 6382.

    Google Scholar 

  44. Smith, H. W. The Kidney: Structure and Function in Health and Disease. New York: Oxford Univ. Press, 1951.

    Google Scholar 

  45. Smith, H. W. The Kidney: Structure and Function in Health and Disease. New York: Oxford Univ. Press, 1951, p. 149.

    Google Scholar 

  46. Smith, H. W. Man and His Gods. Boston, MA: Little, Brown, 1955, p. 445–485.

    Google Scholar 

  47. Smith, H. W. Renal physiology. In: Circulation of the Blood: Men and Ideas, edited by A. F. Fishman and D. W. Richards. New York: Oxford Univ. Press, 1964, p. 545–606.

    Google Scholar 

  48. Smith, H. W. Homer William Smith, ScD—His Scientific and Literary Achievements,edited by H. Chasis and W. Goldring. New York: New York Univ. Press, 1965, plates 1, 4, and 16.

    Google Scholar 

  49. Smith, H. W., W. Goldring, and H. Chasis. The measurement of the tubular excretory mass, effective blood flow and filtration rate in the normal human kidney. J. Clin. Invest. 17: 263–278, 1938. •

    Google Scholar 

  50. Smith, H. W., W. Goldring, H. Chasis, H. A. Ranges, and S. E. Bradley. The application of saturation methods to the study of glomerular and tubular function in the human kidney. J. Mt. Sinai Hosp. 10: 59–108, 1943.

    Google Scholar 

  51. Van Slyke, D. D., C. P. Rhoads, A. Hiller, and A. S. Alving. Relationships between urea excretion, renal blood flow, renal oxygen consumption, and diuresis. The mechanism of urea excretion. Am. J. Physiol. 109: 336–374, 1934.

    Google Scholar 

  52. Vaughan, V. C. A Doctor’s Memories. Indianapolis, IN: Bobbs-Merrill, 1926, p. 212.

    Google Scholar 

  53. Weiner, I. M. Transport of weak acids and bases. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, sect. 8, chapt. 17, p. 521–554.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 American Physiological Society

About this chapter

Cite this chapter

Bradley, S.E. (1987). Clearance Concept in Renal Physiology. In: Gottschalk, C.W., Berliner, R.W., Giebisch, G.H. (eds) Renal Physiology. People and Ideas. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7545-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7545-3_3

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7545-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics