Skip to main content

Central Adaptation to Hypoxia

  • Chapter
Response and Adaptation to Hypoxia

Part of the book series: Clinical Physiology Series ((CLINPHY))

Abstract

It is well established that in anesthetized animals, in the absence of peripheral chemoreceptor stimulation, hypoxia produces a depression of breathing. Recently, there has been considerable interest in discerning the mechanisms responsible for the central depression of respiration during hypoxia. A basic issue that arises when considering the mechanisms responsible for hypoxic modulation of central respiratory output is whether respiratory neuronal activity is simply limited by substrate availability within the brain, or whether this depression represents an active inhibition of neuronal activity. Such inhibition could serve to minimize energy use during hypoxia by limiting motor activity as well as conserving high energy substrates that would be used normally to reestablish transmembrane ionic gradients dissipated during neuronal activity. Thus, neuronal inhibition might subserve a protective function by affording tolerance to hypoxic environments. This ability to “down-regulate” metabolic activity during hypoxia is a well-characterized phenomenon in many lower vertebrates, for example, the diving turtle (46), but may also be physiologically relevant in both unanesthetized neonatal and adult mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanco, C. E., M.A. Hanson, P. Johnson, and H. Rigatto. Breathing pattern of kittens during hypoxia. J. Appl. Physiol. 56: 12–17, 1984.

    PubMed  CAS  Google Scholar 

  2. Bonventre, J. V., and J. Y. Cheung. Effects of metabolic acidosis on viability of cells exposed to anoxia. Am. J. Physiol. 249: C149 - C159, 1985.

    PubMed  CAS  Google Scholar 

  3. Brown, R. M., S. R. Snider, and A. Carlsson. Changes in biogenic amine synthesis and turnover induced by hypoxia and/or foot shock stress. II. The central nervous system. J. Neurol. Trans. 35: 293–305, 1974.

    Article  CAS  Google Scholar 

  4. Bureau, M. A., J. Lamarche, P. Foulon, and D. Dalle. The ventilatory response to hypoxia in the newborn lamb after carotid body denervation. Respir. Physiol. 60: 109–119, 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Chernick, V., and R. J. Craig. Naloxone reverses neonatal depression caused by fetal asphyxia. Science 216: 1252–1253, 1982.

    Article  PubMed  CAS  Google Scholar 

  6. Darnall, R. A. Aminophylline reduces hypoxic ventilatory depression: possible role of adenosine. Ped. Res. 19: 706–710, 1985.

    Article  CAS  Google Scholar 

  7. Davis, J. N., and A. Carlsson. Effect of hypoxia on monoamine synthesis, levels and metabolism in rat brain. J. Neurochem. 21: 783–790, 1973.

    Article  PubMed  CAS  Google Scholar 

  8. Deboeck, C., P. Van Raempts, H. Rigatto, and V. Chernick. Naloxone reduces decrease in ventilation induced by hypoxia in newborn infants. J. Appl. Physiol. 56: 1507–1511, 1984.

    CAS  Google Scholar 

  9. Duffy, T. E., S. R. Nelson, and O. H. Lowry. Cerebral carbohydrate metabolism during acute hypoxia and recovery. J. Neurochem. 19: 959–977, 1972.

    Article  PubMed  CAS  Google Scholar 

  10. Easton, P. A., and N. R. Anthonisen. Ventilatory response to sustained hypoxia after pretreatment with aminophylline. J. Appl. Physiol. 64: 1445–1450, 1988.

    PubMed  CAS  Google Scholar 

  11. Easton, P. A., L. J. Slykerman, and N. R. Anthonisen. Ventilatory response to sustained hypoxia in normal adults. J. Appl. Physiol. 61:906–911, 1986.

    Google Scholar 

  12. Easton, P. A., L. J. Slykerman, and N. R. Anthonisen. Recovery of the ventilatory response to hypoxia in normal adults. J. Appl. Physiol. 64: 521–528, 1988.

    Article  PubMed  CAS  Google Scholar 

  13. Erecinska, M., D. Nelson, D. F. Wilson, and I. A. Silver. Neurotransmitter amino acids in the Cns. I. Regional changes in amino acid levels in rat brain during ischemia and reperfusion. Brain Res. 304: 9–22, 1984.

    Article  PubMed  CAS  Google Scholar 

  14. Filuk, R. B., D. J. Berezanski, and N. R. Anthonisen. Depression of hypoxic ventilatory response in humans by somatostatin. J. Appl. Physiol. 65: 1050–1054, 1988.

    PubMed  CAS  Google Scholar 

  15. Freedman, A., A. T. Scardella, N. H. Edelman, and T. V. Santiago. Hypoxia does not increase Csf or plasma beta-endorphin activity. J. Appl. Physiol. 64: 966–971, 1988.

    PubMed  CAS  Google Scholar 

  16. Fregosi, R. F., S. L. Knuth, D. K. Ward, and D. Bartlett, JR. Hypoxia inhibits abdominal expiratory nerve activity. J. Appl. Physiol. 63: 211–220, 1987.

    PubMed  CAS  Google Scholar 

  17. Georgopoulos, D., D. Berezanski, and N. R. Anthonisen. Effects of CO2 breathing on ventilatory response to sustained hypoxia in normal adults. J. Appl. Physiol. 66: 1071–1078, 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Gibson, G. E., M. Shimada, and J. P. Blass. Alterations in acetylcholine synthesis and in cyclic nucleotides in mild cerebral hypoxia. J. Neurochem. 31: 757–760, 1978.

    Article  PubMed  CAS  Google Scholar 

  19. Haddad, G. G., and R. B. Mellins. Hypoxia and respiratory control in early life. Ann. Rev. Physiol. 46: 629–643, 1984.

    Article  CAS  Google Scholar 

  20. Hagberg, H., A. Lehmann, M. Sandberg, B. Nystrom, I. Jacobson, and A. Hamberger. Ischemia-induced shift of inhibitory and excitatory amino acids from intra-to extra-cellular compartments. J. Cereb. Blood Flow Metab. 5: 413–419, 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Hitzig, B. M., and E. E. Nattie. Acid-base stress and central chemical control of ventilation in turtles. J. Appl. Physiol. 53: 1365–1370, 1982.

    PubMed  CAS  Google Scholar 

  22. Hochachka, P. W. Defense strategies against hypoxia and hypothermia. Science 231: 234–241, 1986.

    Article  PubMed  CAS  Google Scholar 

  23. Holtby, S. G., D. J. Berezanski, and N. R. Anthonisen. Effect of 100% O2 on hypoxic eucapnic ventilation. J. Appl. Physiol. 65: 1157–1162, 1988.

    PubMed  CAS  Google Scholar 

  24. Iversen, K., T. Hedner, and P. Lundborg. Gaba concentrations and turnover in neonatal rat brain during asphyxia and recovery. Acta Physiol. Scand. 118: 91–94, 1983.

    Article  PubMed  CAS  Google Scholar 

  25. Jodkowski, J. S., and J. Lipski. Decreased excitability of respiratory motoneurons during hypercapnia in the acute spinal cat. Brain Res. 386: 296–304, 1986.

    Article  PubMed  CAS  Google Scholar 

  26. Kagawa, S., M. J. Stafford, T. B. Waggener, And J. W. Severinghaus. No effect of naloxone on hypoxia-induced ventilatory depression in adults. J. Appl. Physiol. 52: 1030–1034, 1982.

    PubMed  CAS  Google Scholar 

  27. Krynjevic, K., M. Randic, and B. K. Siesjo. Cortical CO2 tension and neuronal excitability. J. Physiol. (London) 176: 105–122, 1965.

    Google Scholar 

  28. Lawson, E. E., and W. W. Long. Central origin of biphasic breathing pattern during hypoxia in newborns. J. Appl. Physiol. 55: 483–488, 1983.

    PubMed  CAS  Google Scholar 

  29. Marshall, K. C., and I. Engberg. The effects of hydrogen ion on spinal neurons. Can. J. Physiol. Pharmacol. 58: 650–655, 1980.

    Article  PubMed  CAS  Google Scholar 

  30. Melton, J. E., J. A. Neubauer, and N. H. Edelman. CO2 sensitivity of cat phrenic neuro-gram during hypoxic respiratory depression. J. Appl. Physiol. 65: 736–743, 1988.

    PubMed  CAS  Google Scholar 

  31. Melton, J. E., J. A. Neubauer, and N. H. Edelman. Gaba antagonism reverses hypoxic respiratory depression in the cat. J. Appl. Physiol. (provisionally accepted)

    Google Scholar 

  32. Melton, J. E., L. M. Oyer, J. A. Neubauer, and N. H. Edelman. Brain extracellular [K] homeostasis during hypoxic respiratory depression (Abstr). Faseb J. 3 (3): A251, 1989.

    Google Scholar 

  33. Melton, J. E., M. J. Wasicko, J. A. Neubauer, and N. H. Edelman. Patterns of phrenic depression during progressive brain hypoxia (Abstr). Faseb J. 2 (4): A510, 1988.

    Google Scholar 

  34. Mitchell, R. A., and D. A. Herbert. The effect of carbon dioxide on the membrane potential of medullary respiratory neurons. Brain Res. 75: 345–349, 1974.

    Article  PubMed  CAS  Google Scholar 

  35. Neubauer, J. A., M. A. Posner, T. V. Santiago, and N. H. Edelman. Naloxone reduces ventilatory depression of brain hypoxia. J. Appl. Physiol. 63: 699–706, 1987.

    PubMed  CAS  Google Scholar 

  36. Neubauer, J. A., T. V. Santiago, M. A. Posner, and N. H. Edelman. Ventral medullary pH and ventilatory responses to hyperperfusion and hypoxia. J. Appl. Physiol. 58: 1659–1668, 1985.

    PubMed  CAS  Google Scholar 

  37. Neubauer, J. A., A. Simone, and N. H. Edelman. Role of brain lactic acidosis in hypoxic depression of respiration. J. Appl. Physiol. 65: 1324–1331, 1988.

    PubMed  CAS  Google Scholar 

  38. Nissley, F. P., J. E. Melton, J. A. Neubauer, and N. H. Edelman. Effect of adenosine antagonism on phrenic nerve output during brain hypoxia. Fed. Proc. 45:1046, 1986.

    Google Scholar 

  39. Oyer, L. M., J. E. Melton, J. A. Neubauer, and N. H. Edelman. Enhancement of expiratory triangularis sterni nerve (Tsn) activity following severe hypoxia. Faseb J. 3 (4): A1159, 1989.

    Google Scholar 

  40. Parisi, R. A., J. E. Melton, M. J. Wasicko, J. A. Neubauer, Q. P. Yu, and N.H. Edelman. Phrenic responsiveness to carotid sinus nerve stimulation during progressive brain hypoxia. Faseb J. 2: 1507, 1988.

    Google Scholar 

  41. Rigatto, H. Control of ventilation in the newborn. Ann. Rev. Physiol. 46: 661–674, 1984.

    Article  CAS  Google Scholar 

  42. Rothman, S. M. Synaptic activity mediates death of hypoxic neurons. Science 220: 536–537, 1983.

    Article  PubMed  CAS  Google Scholar 

  43. Santiago, T. V, J. A. Neubauer, and N. H. Edelman. Correlation between ventilation and brain blood flow during hypoxic sleep. J. Appl. Physiol. 60: 295–298, 1986.

    PubMed  CAS  Google Scholar 

  44. Schurr, A., W-Q. Dong, K. H. Reid, C. A. West, and B. M. Rigor. Lactic acidosis and recovery of neuronal function following cerebral hypoxia in vitro. Brain Res. 438: 311–314, 1988.

    Article  PubMed  CAS  Google Scholar 

  45. Sick, T. J., M. Rosenthal, J. C. Lamanna, and P. L. Lutz. Brain potassium ion homeostasis, anoxia, and metabolic inhibition in turtles and rats. Am. J. Physiol. 243: R281 - R288, 1982.

    PubMed  CAS  Google Scholar 

  46. Ultsch, G. R., and D. C. Jackson. Long-term submergence at 3°C of the turtle, Chrysemys picta belli, in normoxic and severely hypoxic water. I. Survival, gas exchange, and acid-base status. J. Exp. Biol. 96: 11–28, 1982.

    Google Scholar 

  47. Wasicko, M. J., J. E. Melton, J. A. Neubauer, N. Krawciw, and N. H. Edelman. Cervical sympathetic and phrenic nerve responses to progressive brain hypoxia. J. Appl. Physiol., 68: 53–58, 1990.

    PubMed  CAS  Google Scholar 

  48. Wasicko, M. J., J. A. Neubauer, J. E. Melton, A. M. Harangozo, and N. H. Edelman. The effect of progressive brain hypoxia on the respiratory activity of the hypoglossal nerve (Abstr). Fed. Proc. 46: 1418, 1987.

    Google Scholar 

  49. Weil, J. V., and C. W. Zwillich. Assessment of ventilatory response to hypoxia: methods and interpretation. Chest 70 (Suppl): 124–128, 1976.

    PubMed  CAS  Google Scholar 

  50. Winn, H. R., R. Rubio, and R. M. Berne. Brain adenosine concentration during hypoxia in rats. Am. J. Physiol. 241: H235 - H242, 1981.

    PubMed  CAS  Google Scholar 

  51. Wood, J. D., W. J. Watson, and A. J. Drucker. The effect of hypoxia on brain gammaaminobutyric acid levels. J. Neurochem. 15: 603–608, 1968.

    Article  PubMed  CAS  Google Scholar 

  52. WU, J-Y. Purification, characterization, and kinetic studies of Gad and Gaba-T from mouse brain. In: Gaba in Nervous System Function, ed. E. Roberts, T. Chase and D. Tower. New York: Raven Press, 1976, pp. 7–55.

    Google Scholar 

  53. YU, Q. P., J. A. Neubauer, J. E. Melton, M. J. Wasicko, J. K-J. Li, N. Krawciw, and N.H. Edelman. Effect of brain hypoxia on the dynamic characteristics of the peak and frequency of phrenic nerve (Abstr). Faseb J. 2 (5): A1508, 1988.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 American Physiological Society

About this chapter

Cite this chapter

Edelman, N.H., Melton, J.E., Neubauer, J.A. (1991). Central Adaptation to Hypoxia. In: Lahiri, S., Cherniack, N.S., Fitzgerald, R.S. (eds) Response and Adaptation to Hypoxia. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7574-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7574-3_22

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7574-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics