Skip to main content

Systems Biology for the Study of Multiple Sclerosis

  • Chapter
  • First Online:
Multiple Sclerosis Immunology

Abstract

Understanding complex diseases such as multiple sclerosis (MS) requires the integration of information from different levels at various times. Key information that must be integrated includes genetic background, environmental exposure, the state of sensitization of the immune system , and the state of cross-talk between the immune system and central nervous system (CNS). In order to achieve this goal, it will be necessary to relate all cellular and molecular events to changes in the tissue and organs and to map these changes on to imaging studies and on to assessment of the clinical course. This represents a difficult challenge for brain diseases because of the practical difficulties in obtaining accurate molecular and cellular information from the CNS in different diseases. In the study of MS, cellular and molecular biology and the new “omics” (genomics, transcriptomics, proteomics, lipidomics, metabolomics, etc.) have identified possible pathways involved in the course of disease; yet an integrative understanding of the pathogenesis is still lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  CAS  Google Scholar 

  • Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    Article  PubMed  CAS  Google Scholar 

  • Baranzini SE (2006) Systems-based medicine approaches to understand and treat complex diseases. The example of multiple sclerosis. Autoimmunity 39:651–662

    Article  PubMed  Google Scholar 

  • Broome TM, Coleman RA (2011) A mathematical model of cell death in multiple sclerosis. J Neurosci Methods 201:420–425

    Article  PubMed  Google Scholar 

  • Buljevac D, Flach HZ, Hop WC et al (2002) Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain 125:952–960

    Article  PubMed  CAS  Google Scholar 

  • Buljevac D, Hop WC, Reedeker W et al (2003) Self reported stressful life events and exacerbations in multiple sclerosis: prospective study. BMJ 327:646

    Article  PubMed  CAS  Google Scholar 

  • Carneiro J, Leon K, Caramalho I et al (2007) When three is not a crowd: a Crossregulation model of the dynamics and repertoire selection of regulatory CD4(+) T cells. Immunol Rev 216:48–68

    PubMed  Google Scholar 

  • Conradi C, Saez-Rodriguez J, Gilles ED, Raisch J (2005) Using chemical reaction network theory to discard a kinetic mechanism hypothesis. Syst Biol (Stevenage) 152:243–248

    Article  CAS  Google Scholar 

  • Comabella M, Lunemann JD, Rio J et al (2009a) A type I interferon signature in monocytes is associated with poor response to interferon-beta in multiple sclerosis. Brain 132:3353–3365

    Article  CAS  Google Scholar 

  • Comabella M, Craig DW, Morcillo-Suarez C et al (2009b) Genome-wide scan of 500,000 single-nucleotide polymorphisms among responders and nonresponders to interferon beta therapy in multiple sclerosis. Arch Neurol 66:972–978

    Article  Google Scholar 

  • Cotsapas C, Voight BF, Rossin E et al (2011) Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet 7:e1002254

    Article  PubMed  CAS  Google Scholar 

  • Foster KR (2011) The sociobiology of molecular systems. Nat Rev Genet 12:193–203

    Article  PubMed  CAS  Google Scholar 

  • Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL (2007) The human disease network. Proc Natl Acad Sci U S A 104:8685–8690

    Article  PubMed  CAS  Google Scholar 

  • Goñi J, Esteban FJ, Velez N, Sepulcre J, Ardanza-Trevijano S, Villoslada P (2008) A computational analysis of protein-protein interaction networks in neurodegenerative diseases. BMC Sys Biol 2:52

    Article  Google Scholar 

  • Gutierrez-Achury J, Coutinho de Almeida R, Wijmenga C (2011) Shared genetics in coeliac disease and other immune-mediated diseases. J Intern Med 269:591–603

    Article  PubMed  CAS  Google Scholar 

  • Han MH, Steinman L (2009) Systems biology for identification of molecular networks in multiple sclerosis. Mult Scler 15:529–530

    Article  PubMed  CAS  Google Scholar 

  • Hauser SL, Oksenberg JR (2006) The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 52:61–76

    Article  PubMed  CAS  Google Scholar 

  • He X, Zhang J. Why do hubs tend to be essential in protein networks? PLoS Genet 2:e88

    Google Scholar 

  • Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18:644–652

    Article  PubMed  CAS  Google Scholar 

  • Kitano H (2007) A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6:202–210

    Article  PubMed  CAS  Google Scholar 

  • Leon K, Perez R, Lage A, Carneiro J (2001) Three-cell interactions in T cell-mediated suppression? A mathematical analysis of its quantitative implications. J Immunol 166:5356–5365

    PubMed  CAS  Google Scholar 

  • Linker RA, Lee DH, Ryan S et al (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134:678–692

    Article  PubMed  Google Scholar 

  • Martin R, McFarland HF, McFarlin DE (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10:153–87

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Forero I, Garcia-Munoz R, Martinez-Pasamar S et al (2008) IL-10 suppressor activity and ex vivo Tr1 cell function are impaired in multiple sclerosis. Eur J Immunol 38:576–586

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Forero I, Pelaez-Lopez A, Villoslada P (2010) Steady state detection of chemical reaction networks using a simplified analytical method. PloS One 5:e10823

    Article  PubMed  Google Scholar 

  • Moreno B, Hevia H, Santamaria M et al (2006) Methylthioadenosine reverses brain autoimmune disease. Ann Neurol 60:323–334

    Article  PubMed  CAS  Google Scholar 

  • Noorbakhsh F, Overall CM, Power C (2009) Deciphering complex mechanisms in neurodegenerative diseases: the advent of systems biology. Trends Neurosci 32:88–100

    Article  PubMed  CAS  Google Scholar 

  • O’Doherty C, Villoslada P, Vandenbroeck K (2007) Pharmacogenomics of Type I interferon therapy: a survey of response-modifying genes. Cytokine Growth Factor Rev 18:211–222

    Article  Google Scholar 

  • Palacios R, Goni J, Martinez-Forero I et al (2007) A network analysis of the human T-cell activation gene network identifies JAGGED1 as a therapeutic target for autoimmune diseases. PloS One 2:e1222

    Article  PubMed  Google Scholar 

  • Platten M, Ho PP, Youssef S et al (2005) Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310:850–855

    Article  PubMed  CAS  Google Scholar 

  • Quintana FJ, Farez MF, Weiner HL (2008) Systems biology approaches for the study of multiple sclerosis. J Cell Mol Med 12:1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Schadt EE, Friend SH, Shaywitz DA (2009) A network view of disease and compound screening. Nat Rev Drug Discov 8:286–295

    Article  PubMed  CAS  Google Scholar 

  • Sieberts SK, Schadt EE (2007) Moving toward a system genetics view of disease. Mamm Genome 18:389–401

    Article  PubMed  Google Scholar 

  • Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747

    Article  PubMed  CAS  Google Scholar 

  • van der Greef J, Martin S, Juhasz P et al. (2007) The art and practice of systems biology in medicine: mapping patterns of relationships. J Proteome Res 6:1540–1559

    Article  PubMed  Google Scholar 

  • Velez de Mendizabal N, Carneiro J, Sole RV et al (2011) Modeling the effector—regulatory T cell cross-regulation reveals the intrinsic character of relapses in multiple sclerosis. BMC Syst Biol 5:114

    Article  PubMed  Google Scholar 

  • Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4 + CD25 + regulatory T cells in patients with multiple sclerosis. J Exp Med 199:971–979

    Article  PubMed  CAS  Google Scholar 

  • Villoslada P, Oksenberg J (2006) Neuroinformatics in clinical practice: are computers going to help neurological patients and their physicians? Future Neurology 1:1–12

    Article  Google Scholar 

  • Villoslada P, Baranzini S (2012) Data integration and systems biology approaches for biomarker discovery: challenges and opportunities for multiple sclerosis. J Neuroimmunol 248(1–2):58–65

    Article  PubMed  CAS  Google Scholar 

  • Villoslada P, Steinman L, Baranzini SE (2009) Systems biology and its application to the understanding of neurological diseases. Ann Neurol 65:124–139

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Khankhanian P, Baranzini SE, Mousavi P (2011) iCTNet: a Cytoscape plugin to produce and analyze integrative complex traits networks. BMC Bioinformatics 12:380

    Article  PubMed  Google Scholar 

  • Zhernakova A, van Diemen CC, Wijmenga C (2009) Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat Rev Genet 10:43–55

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Villoslada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Villoslada, P., Steinman, L. (2013). Systems Biology for the Study of Multiple Sclerosis. In: Yamamura, T., Gran, B. (eds) Multiple Sclerosis Immunology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7953-6_12

Download citation

Publish with us

Policies and ethics