Skip to main content

Theory of Quantum Dot Arrays for Solar Cell Devices

  • Chapter
  • First Online:
Quantum Dot Solar Cells

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 15))

  • 4321 Accesses

Abstract

Vertically or laterally coupled semiconductor quantum dot (QD) arrays emerged recently as promising structures for the next generation of high-efficiency intermediate band solar cell (IBSC), due to their ability to facilitate the formation of mini-bands. The quantum coupling effect, that exists between states in QDs of an array, influences the electronic and optical properties of such structures. We present here a method based on multi-band kp Hamiltonian combined with periodic boundary conditions, applied to predict the electronic and optical properties of InAs/GaAs QDs based vertical and lateral QD arrays. Formation of the intermediate band (IB) in all cases was achieved via delocalisation of the electron ground state (e0). By changing the geometry of the QD arrangement in arrays we have identified conditions for the IB to be separated by a pure zero density of states from the rest of states in the conduction band (CB). Due to symmetry of the QD array lattice and QD states itself, which are C 2v for the zinc blende QDs, the electronic and absorption structure needs to be obtained via sampling throughout the reciprocal space in the first Brillouin zone of QD arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The TE means that the optical field is polarized along any of, \(\hat{e}_{x} +\hat{ e}_{y}\), directions that are “in-plane” of the structure, and is perpendicular to the QD array growth axis; TM means that the optical field is polarized along, \(\hat{e}_{z}\), direction parallel to the QD array growth axes.

References

  1. Wolf, M.: Proc. IRE 48, 1246 (1960)

    Article  Google Scholar 

  2. Luque, A., Martí, A.: Phys. Rev. Lett. 78, 5014 (1997)

    Article  ADS  Google Scholar 

  3. Wahnón, P., Tablero, C.: Phys. Rev. B 65, 165115 (2002)

    Article  ADS  Google Scholar 

  4. Palacios, P., Aguilera, I., Wahnon, P., Conesa, J.C.: J. Phys. Chem. C 112, 9525 (2008)

    Article  Google Scholar 

  5. Palacios, P., Sanchez, K., Conesa, J., Fernandez, J., Wahnon, P.: Thin Solid Films 515, 6280 (2007)

    Article  ADS  Google Scholar 

  6. Bailey, C.L., Liborio, L., Mallia, G., Tomić, S., Harrison, N.M.: Phys. Rev. B 81, 205214 (2010)

    Article  ADS  Google Scholar 

  7. López, N., Reichertz, L.A., Yu, K.M., Campman, K., Walukiewicz, W.: Phys. Rev. Lett. 106, 028701 (2011)

    Article  ADS  Google Scholar 

  8. Guimard, D., Morihara, R., Bordel, D., Tanabe, K., Wakayama, Y., Nishioka, M., Arakawa, Y.: Appl. Phys. Lett. 96, 203507 (2010)

    Article  ADS  Google Scholar 

  9. Oshima, R., Takata, A., Okada, Y.: Appl. Phys. Lett. 93, 083111 (2008)

    Article  ADS  Google Scholar 

  10. Martí, A., Antolín, E., Stanley, C.R., Farmer, C.D., López, N., Díaz, P., Cánovas, E., Linares, P.G., Luque, A.: Phys. Rev. Lett. 97, 247701 (2006)

    Article  ADS  Google Scholar 

  11. Hubbard, S.M., Cress, C.D., Bailey, C.G., Raffaelle, R.P., Bailey, S.G., Wilt, D.M.: Appl. Phys. Lett. 92, 123512 (2008)

    Article  ADS  Google Scholar 

  12. Blokhin, S., Sakharov, A., Nadtochy, A., Pauysov, A., Maximov, M., Ledentsov, N., Kovsh, A., Mikhrin, S., Lantratov, V., Mintairov, S., Kaluzhniy, N., Shvarts, M.: Semiconductors 43, 514 (2009)

    Article  ADS  Google Scholar 

  13. Sablon, K.A., Little, J.W., Mitin, V., Sergeev, A., Vagidov, N., Reinhardt, K.: Nano Lett. 11, 2311 (2011).

    Article  ADS  Google Scholar 

  14. Bailey, C.G., Forbes, D.V., Raffaelle, R.P., Hubbard, S.M.: Appl. Phys. Lett. 98, 163105 (2011)

    Article  Google Scholar 

  15. Okada, Y., Morioka, T., Yoshida, K., Oshima, R., Shoji, Y., Inoue, T., Kita, T.: J. Appl. Phys. 109, 024301 (2011)

    Article  ADS  Google Scholar 

  16. Luttinger, J.M., Kohn, W.: Phys. Rev. 97, 869 (1955)

    Article  ADS  MATH  Google Scholar 

  17. Kane, E.O.: J. Phys. Chem. Solid. 1, 249 (1957)

    Article  ADS  Google Scholar 

  18. Kane, E.O.: Semiconduct. Semimetal. 1, 75 (1966)

    Article  Google Scholar 

  19. Cardona, M., Pollak, F.H.: Phys. Rev. 142, 530 (1966)

    Article  ADS  Google Scholar 

  20. Richard, S., Aniel, F., Fishman, G.: Phys. Rev. B 70, 235204 (2004)

    Article  ADS  Google Scholar 

  21. Rideau, D., Feraille, M., Ciampolini, L., Minondo, M., Tavernier, C., Jaouen, H., Ghetti, A.: Phys. Rev. B 74, 195208 (2006)

    Article  ADS  Google Scholar 

  22. Foreman, B.A.: Phys. Rev. B 76, 045327 (2007)

    Article  ADS  Google Scholar 

  23. Saïdi, I., Radhia, S.B., Boujdaria, K.: J. Appl. Phys. 107, 043701 (2010)

    Article  ADS  Google Scholar 

  24. Bir, G.L., Pikus, G.E.: Symmetry and Strain-Induced Effects in Semiconductors. Wiley, New York (1974)

    Google Scholar 

  25. Loehr, J.P.: Physics of Strained Quantum Well Lasers. Kluwer, Boston (1998)

    Book  Google Scholar 

  26. Pidgeon, C.R., Brown, R.N.: Phys. Rev. 146, 575 (1966)

    Article  ADS  Google Scholar 

  27. Pryor, C.: Phys. Rev. B 57, 7190 (1998)

    Article  ADS  Google Scholar 

  28. Stier, O., Grundmann, M., Bimberg, D.: Phys. Rev. B 59, 5688 (1999)

    Article  ADS  Google Scholar 

  29. Cusack, M.A., Briddon, P.R., Jaros, M.: Phys. Rev. B 54, R2300 (1996)

    Article  ADS  Google Scholar 

  30. Vukmirović, N., Indjin, D., Jovanović, V.D., Ikonić, Z., Harrison, P.: Phys. Rev. B 72, 075356 (2005)

    Article  ADS  Google Scholar 

  31. Tomić, S., Sunderland, A.G., Bush, I.J.: J. Mater. Chem. 16, 1963 (2006)

    Article  Google Scholar 

  32. Vukmirović, N., Tomić, S.: J. Appl. Phys. 103, 103718 (2008)

    Article  ADS  Google Scholar 

  33. Andreev, A.D., Downes, J.R., Faux, D.A., O’Reilly, E.P.: J. Appl. Phys. 86, 297 (1999)

    Article  ADS  Google Scholar 

  34. Li, S.-S., Xia, J.-B., Yuan, Z.L., Xu, Z.Y., Ge, W., Wang, X.R., Wang, Y., Wang, J., Chang, L.L.: Phys. Rev. B 54, 11575 (1996)

    Article  ADS  Google Scholar 

  35. Andreev, A.: In: Proceedings of SPIE, vol. 3284, pp. 151–161 (1998); Conference on In-Plane Semiconductor Lasers: From Ultraviolet to Mid-Infrared II, San Jose, CA, 26–28 Jan 1998

    Google Scholar 

  36. Lazarenkova, O.L., Balandin, A.A.: J. Appl. Phys. 89, 5509 (2001)

    Article  ADS  Google Scholar 

  37. Shao, Q., Balandin, A.A., Fedoseyev, A.I., Turowski, M.: Appl. Phys. Lett. 91, 163503 (2007)

    Article  ADS  Google Scholar 

  38. Tomić, S., Jones, T.S., Harrison, N.M.: Appl. Phys. Lett. 93, 263105 (2008)

    Article  ADS  Google Scholar 

  39. Klos, J.W., Krawczyk, M.: J. Appl. Phys. 106, 093703 (2009)

    Article  ADS  Google Scholar 

  40. Bragar, I., Machnikowski, P.: J. Appl. Phys. 112, 124318 (2012)

    Article  ADS  Google Scholar 

  41. Tomić, S.: Phys. Rev. B 82, 195321 (2010)

    Article  ADS  Google Scholar 

  42. Todorovic, G., Milanovic, V., Ikonic, Z., Indjin, D.: Solid State Comm. 110, 103 (1999)

    Article  ADS  Google Scholar 

  43. Tadić, M., Ikonić, Z.: Phys. Rev. B 52, 8266 (1995)

    Article  ADS  Google Scholar 

  44. Joyce, P.B., Krzyzewski, T.J., Bell, G.R., Joyce, B.A., Jones, T.S.: Phys. Rev. B 58, R15981 (1998)

    Article  ADS  Google Scholar 

  45. Tomić, S., Howe, P., Harrison, N.M., Jones, T.S.: J. Appl. Phys. 99, 093522 (2006)

    Article  ADS  Google Scholar 

  46. Canovas, E., Marti, A., Lopez, N., Antolin, E., Linares, P., Farmer, C., Stanley, C., Luque, A.: Thin Solid Films 516, 6943 (2008)

    Article  ADS  Google Scholar 

  47. Zibik, E.A., Wilson, L.R., Green, R.P., Bastard, G., Ferreira, R., Phillips, P.G., Carder, D.A., Wells, J.-P.R., Cockburn, J.W., Skolnick, M.S., Steer, M.J., Hopkinson, M.: Phys. Rev. B 70, 161305 (2004)

    Article  ADS  Google Scholar 

  48. Sauvage, S., Boucaud, P., Lobo, R.P.S.M., Bras, F., Fishman, G., Prazeres, R., Glotin, F., Ortega, J.M., Gérard, J.-M.: Phys. Rev. Lett. 88, 177402 (2002)

    Article  ADS  Google Scholar 

  49. Andreev, A.D., O’Reilly, E.P.: Appl. Phys. Lett. 87, 213106 (2005)

    Article  ADS  Google Scholar 

  50. van Roosbroeck, W., Shockley, W.: Phys. Rev. 94, 1558 (1954)

    Article  ADS  Google Scholar 

  51. Sauvage, S., Boucaud, P., Julien, F.H., Gérard, J.-M., Thierry-Mieg, V.: Appl. Phys. Lett. 71, 2785 (1997)

    Article  ADS  Google Scholar 

  52. Aleshkin, V., et al.: Light absorption and emission in InAs/GaAs quantum dots and stepped quantum wells. In: Alferov Z.I., Esaki L. (eds.) 10TH International Symposium on Nanostructures: Physics and Technology. Proceedings of The Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 5023, pp. 209–212, 2003. 10th International Symposium on Nanostructures, ST Petersburg, Russia, 17–21 June 2002

    Google Scholar 

  53. Vorobjev, L.E., Firsov, D.A., Shalygin, V.A., Fedosov, N.K., Panevin, V.Y., Andreev, A., Ustinov, V.M., Cirlin, G.E., Egorov, V.A., Tonkikh, A.A., Fossard, F., Tchernycheva, M., Moumanis, K., Julien, F.H., Hanna, S., Seilmeier, A., Sigg, H.: Semicond. Sci. Tech. 21, 1341 (2006)

    Article  ADS  Google Scholar 

  54. Strandberg, R., Reenaas, T.W.: J. Appl. Phys. 105, 124512 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Y. Okada, T. Sogabe and N. Vukmirović for many useful discussions and suggestions. The author is grateful to the New Energy and Industrial Technology Development Organization (NEDO), Japan, for financial support under grant: “Research and Development on Innovative Solar Cells: Post-Silicon solar cells for ultra-high efficiencies”. The author also wishes to thank the STFC e-Science, UK, for providing the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanko Tomić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tomić, S. (2014). Theory of Quantum Dot Arrays for Solar Cell Devices. In: Wu, J., Wang, Z. (eds) Quantum Dot Solar Cells. Lecture Notes in Nanoscale Science and Technology, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8148-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8148-5_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8147-8

  • Online ISBN: 978-1-4614-8148-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics