Skip to main content

Animal Models of Experimental Myopia: Limitations and Synergies with Studies on Human Myopia

  • Chapter
  • First Online:
Pathologic Myopia

Abstract

This article reviews the basic methods used in experimental myopia, from the perspective of how they can be used to provide insights into human myopia. Experimental myopia in non-human primates provides the best model for human myopia, but there is an important limitation in that all studies on experimental myopia are performed at an early developmental period, which corresponds to the early neonatal period of refractive development in humans, where the greatest plasticity is observed. Another important limitation is that the means used to induce experimental myopia are not clearly related to those which lead to human myopia. Other experimental animals deviate more markedly from the developmental patterns seen in humans and suffer from the same limitations, but all can be used to explore molecular and cellular mechanisms at a level of detail which cannot be achieved in humans. The article then considers several case studies of synergism between studies on human and experimental myopia and finally proposes a model pathway as a basis for further studies on both human and experimental myopia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curtin BJ. The myopias. New York: Harper and Row; 1985.

    Google Scholar 

  2. Levinsohn G. Reply to criticisms of my theory on the genesis of myopia. Arch Ophthalmol. 1936;15:84.

    Google Scholar 

  3. Young FA. The development and retention of myopia by monkeys. Am J Optom Arch Am Acad Optom. 1961;38:545–55. Epub 1961/10/01.

    CAS  PubMed  Google Scholar 

  4. Wiesel TN, Raviola E. Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature. 1977;266(5597):66–8. Epub 1977/03/03.

    CAS  PubMed  Google Scholar 

  5. Wallman J, Turkel J, Trachtman J. Extreme myopia produced by modest change in early visual experience. Science. 1978;201(4362):1249–51. Epub 1978/09/29.

    CAS  PubMed  Google Scholar 

  6. Tejedor J, de la Villa P. Refractive changes induced by form deprivation in the mouse eye. Invest Ophthalmol Vis Sci. 2003;44(1):32–6. Epub 2002/12/31.

    PubMed  Google Scholar 

  7. Barathi VA, Boopathi VG, Yap EP, Beuerman RW. Two models of experimental myopia in the mouse. Vision Res. 2008;48(7):904–16. Epub 2008/02/22.

    CAS  PubMed  Google Scholar 

  8. Howlett MH, McFadden SA. Spectacle lens compensation in the pigmented guinea pig. Vision Res. 2009;49(2):219–27. Epub 2008/11/11.

    PubMed  Google Scholar 

  9. Howlett MH, McFadden SA. Form-deprivation myopia in the guinea pig (Cavia porcellus). Vision Res. 2006;46(1–2):267–83. Epub 2005/09/06.

    PubMed  Google Scholar 

  10. Sherman SM, Norton TT, Casagrande VA. Myopia in the lid-sutured tree shrew (Tupaia glis). Brain Res. 1977;124(1):154–7. Epub 1977/03/18.

    CAS  PubMed  Google Scholar 

  11. Wallman J, Winawer J. Homeostasis of eye growth and the question of myopia. Neuron. 2004;43(4):447–68. Epub 2004/08/18.

    CAS  PubMed  Google Scholar 

  12. Cook RC, Glasscock RE. Refractive and ocular findings in the newborn. Am J Ophthalmol. 1951;34(10):1407–13. Epub 1951/10/01.

    CAS  PubMed  Google Scholar 

  13. Mayer DL, Hansen RM, Moore BD, Kim S, Fulton AB. Cycloplegic refractions in healthy children aged 1 through 48 months. Arch Ophthalmol. 2001;119(11):1625–8. Epub 2001/11/16.

    CAS  PubMed  Google Scholar 

  14. Mutti DO, Mitchell GL, Jones LA, Friedman NE, Frane SL, Lin WK, et al. Axial growth and changes in lenticular and corneal power during emmetropization in infants. Invest Ophthalmol Vis Sci. 2005;46(9):3074–80. Epub 2005/08/27.

    PubMed  Google Scholar 

  15. Pennie FC, Wood IC, Olsen C, White S, Charman WN. A longitudinal study of the biometric and refractive changes in full-term infants during the first year of life. Vision Res. 2001;41(21):2799–810. Epub 2001/10/06.

    CAS  PubMed  Google Scholar 

  16. Morgan IG, Rose KA, Ellwein LB. Is emmetropia the natural endpoint for human refractive development? An analysis of population-based data from the refractive error study in children (RESC). Acta Ophthalmol. 2010;88(8):877–84. Epub 2009/12/05.

    PubMed  PubMed Central  Google Scholar 

  17. Ojaimi E, Rose KA, Morgan IG, Smith W, Martin FJ, Kifley A, et al. Distribution of ocular biometric parameters and refraction in a population-based study of Australian children. Invest Ophthalmol Vis Sci. 2005;46(8):2748–54. Epub 2005/07/27.

    PubMed  Google Scholar 

  18. Jones LA, Mitchell GL, Mutti DO, Hayes JR, Moeschberger ML, Zadnik K. Comparison of ocular component growth curves among refractive error groups in children. Invest Ophthalmol Vis Sci. 2005;46(7):2317–27. Epub 2005/06/28.

    PubMed  Google Scholar 

  19. Wong HB, Machin D, Tan SB, Wong TY, Saw SM. Ocular component growth curves among Singaporean children with different refractive error status. Invest Ophthalmol Vis Sci. 2010;51(3):1341–7. Epub 2009/10/31.

    PubMed  Google Scholar 

  20. Iribarren R, Morgan IG, Chan YH, Lin X, Saw SM. Changes in lens power in Singapore Chinese children during refractive development. Invest Ophthalmol Vis Sci. 2012;53(9):5124–30. Epub 2012/07/13.

    PubMed  Google Scholar 

  21. Mutti DO, Mitchell GL, Sinnott LT, Jones-Jordan LA, Moeschberger ML, Cotter SA, et al. Corneal and crystalline lens dimensions before and after myopia onset. Optom Vis Sci. 2012;89(3):251–62. Epub 2012/01/10.

    PubMed  PubMed Central  Google Scholar 

  22. Xiang F, He M, Morgan IG. Annual changes in refractive errors and ocular components before and after the onset of myopia in Chinese children. Ophthalmology. 2012;119(7):1478–84. Epub 2012/05/15.

    PubMed  Google Scholar 

  23. Giordano L, Friedman DS, Repka MX, Katz J, Ibironke J, Hawes P, et al. Prevalence of refractive error among preschool children in an urban population: the Baltimore Pediatric Eye Disease Study. Ophthalmology. 2009;116(4):739–46, 46 e1-4. Epub 2009/02/27.

    PubMed  PubMed Central  Google Scholar 

  24. Multi-Ethnic Pediatric Eye Disease Study Group. Prevalence of myopia and hyperopia in 6- to 72-month-old african american and Hispanic children: the multi-ethnic pediatric eye disease study. Ophthalmology. 2010;117(1):140–7.e3. Epub 2009/11/21.

    PubMed Central  Google Scholar 

  25. Dirani M, Chan YH, Gazzard G, Hornbeak DM, Leo SW, Selvaraj P, et al. Prevalence of refractive error in Singaporean Chinese children: the strabismus, amblyopia, and refractive error in young Singaporean Children (STARS) study. Invest Ophthalmol Vis Sci. 2010;51(3):1348–55. Epub 2009/11/26.

    PubMed  Google Scholar 

  26. Chen J, Xie A, Hou L, Su Y, Lu F, Thorn F. Cycloplegic and noncycloplegic refractions of Chinese neonatal infants. Invest Ophthalmol Vis Sci. 2011;52(5):2456–61. Epub 2010/11/23.

    PubMed  Google Scholar 

  27. Wildsoet CF. Active emmetropization–evidence for its existence and ramifications for clinical practice. Ophthalmic Physiol Opt. 1997;17(4):279–90. Epub 1997/07/01.

    CAS  PubMed  Google Scholar 

  28. Anderson HA, Glasser A, Manny RE, Stuebing KK. Age-related changes in accommodative dynamics from preschool to adulthood. Invest Ophthalmol Vis Sci. 2010;51(1):614–22. Epub 2009/08/18.

    PubMed  Google Scholar 

  29. Fotouhi A, Morgan IG, Iribarren R, Khabazkhoob M, Hashemi H. Validity of noncycloplegic refraction in the assessment of refractive errors: the Tehran Eye Study. Acta Ophthalmol. 2012;90:380–6.

    PubMed  Google Scholar 

  30. Sorsby A, Sheridan M, Leary GA, Benjamin B. Vision, visual acuity, and ocular refraction of young men: findings in a sample of 1,033 subjects. Br Med J. 1960;1(5183):1394–8. Epub 1960/05/07.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoyt CS, Stone RD, Fromer C, Billson FA. Monocular axial myopia associated with neonatal eyelid closure in human infants. Am J Ophthalmol. 1981;91(2):197–200. Epub 1981/02/01.

    CAS  PubMed  Google Scholar 

  32. Schaeffel F, Glasser A, Howland HC. Accommodation, refractive error and eye growth in chickens. Vision Res. 1988;28(5):639–57. Epub 1988/01/01.

    CAS  PubMed  Google Scholar 

  33. Irving EL, Callender MG, Sivak JG. Inducing myopia, hyperopia, and astigmatism in chicks. Optom Vis Sci. 1991;68(5):364–8. Epub 1991/05/01.

    CAS  PubMed  Google Scholar 

  34. McBrien NA, Moghaddam HO, New R, Williams LR. Experimental myopia in a diurnal mammal (Sciurus carolinensis) with no accommodative ability. J Physiol. 1993;469:427–41. Epub 1993/09/01.

    CAS  PubMed  Google Scholar 

  35. McBrien NA, Moghaddam HO, Reeder AP. Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism. Invest Ophthalmol Vis Sci. 1993;34(1):205–15. Epub 1993/01/01.

    CAS  PubMed  Google Scholar 

  36. Wildsoet C. Neural pathways subserving negative lens-induced emmetropization in chicks–insights from selective lesions of the optic nerve and ciliary nerve. Curr Eye Res. 2003;27(6):371–85. Epub 2004/01/06.

    PubMed  Google Scholar 

  37. Schaeffel F, Troilo D, Wallman J, Howland HC. Developing eyes that lack accommodation grow to compensate for imposed defocus. Vis Neurosci. 1990;4(2):177–83. Epub 1990/02/01.

    CAS  PubMed  Google Scholar 

  38. Ashby R, Kozulin P, Megaw PL, Morgan IG. Alterations in ZENK and glucagon RNA transcript expression during increased ocular growth in chickens. Mol Vis. 2010;16:639–49. Epub 2010/04/21.

    CAS  PubMed  Google Scholar 

  39. Feldkaemper M, Schaeffel F. An updated view on the role of dopamine in myopia. Exp Eye Res. 2013;114:106–19.

    CAS  PubMed  Google Scholar 

  40. Wallman J, Adams JI. Developmental aspects of experimental myopia in chicks: susceptibility, recovery and relation to emmetropization. Vision Res. 1987;27(7):1139–63. Epub 1987/01/01.

    CAS  PubMed  Google Scholar 

  41. McBrien NA, Gentle A, Cottriall C. Optical correction of induced axial myopia in the tree shrew: implications for emmetropization. Optom Vis Sci. 1999;76(6):419–27. Epub 1999/07/23.

    CAS  PubMed  Google Scholar 

  42. Wildsoet CF, Schmid KL. Optical correction of form deprivation myopia inhibits refractive recovery in chick eyes with intact or sectioned optic nerves. Vision Res. 2000;40(23):3273–82. Epub 2000/09/29.

    CAS  PubMed  Google Scholar 

  43. Zhu X, McBrien NA, Smith 3rd EL, Troilo D, Wallman J. Eyes in various species can shorten to compensate for myopic defocus. Invest Ophthalmol Vis Sci. 2013;54:2634–44.

    PubMed  Google Scholar 

  44. Mutti DO, Zadnik K. Has near work’s star fallen? Optom Vis Sci. 2009;86(2):76–8. Epub 2009/01/22.

    PubMed  Google Scholar 

  45. Morgan I, Rose K. How genetic is school myopia? Prog Retin Eye Res. 2005;24(1):1–38. Epub 2004/11/24.

    PubMed  Google Scholar 

  46. Gwiazda J, Thorn F, Bauer J, Held R. Myopic children show insufficient accommodative response to blur. Invest Ophthalmol Vis Sci. 1993;34(3):690–4. Epub 1993/03/01.

    CAS  PubMed  Google Scholar 

  47. Goss DA. Clinical accommodation and heterophoria findings preceding juvenile onset of myopia. Optom Vis Sci. 1991;68(2):110–6. Epub 1991/02/01.

    CAS  PubMed  Google Scholar 

  48. Drobe B, de Saint-Andre R. The pre-myopic syndrome. Ophthalmic Physiol Opt. 1995;15(5):375–8. Epub 1995/09/01.

    CAS  PubMed  Google Scholar 

  49. Gwiazda J, Thorn F, Held R. Accommodation, accommodative convergence, and response AC/A ratios before and at the onset of myopia in children. Optom Vis Sci. 2005;82(4):273–8. Epub 2005/04/15.

    PubMed  Google Scholar 

  50. Mutti DO, Mitchell GL, Hayes JR, Jones LA, Moeschberger ML, Cotter SA, et al. Accommodative lag before and after the onset of myopia. Invest Ophthalmol Vis Sci. 2006;47(3):837–46. Epub 2006/03/01.

    PubMed  Google Scholar 

  51. Zhu X. Temporal integration of visual signals in lens compensation (a review). Exp Eye Res. 2013;114:69–76.

    CAS  PubMed  Google Scholar 

  52. Zhu X, Wallman J. Temporal properties of compensation for positive and negative spectacle lenses in chicks. Invest Ophthalmol Vis Sci. 2009;50(1):37–46. Epub 2008/09/16.

    PubMed  PubMed Central  Google Scholar 

  53. Zhu X, Park TW, Winawer J, Wallman J. In a matter of minutes, the eye can know which way to grow. Invest Ophthalmol Vis Sci. 2005;46(7):2238–41. Epub 2005/06/28.

    PubMed  Google Scholar 

  54. Cohen Y, Belkin M, Yehezkel O, Solomon AS, Polat U. Dependency between light intensity and refractive development under light–dark cycles. Exp Eye Res. 2011;92(1):40–6. Epub 2010/11/09.

    CAS  PubMed  Google Scholar 

  55. Cohen Y, Peleg E, Belkin M, Polat U, Solomon AS. Ambient illuminance, retinal dopamine release and refractive development in chicks. Exp Eye Res. 2012;103:33–40. Epub 2012/09/11.

    CAS  PubMed  Google Scholar 

  56. Napper GA, Brennan NA, Barrington M, Squires MA, Vessey GA, Vingrys AJ. The duration of normal visual exposure necessary to prevent form deprivation myopia in chicks. Vision Res. 1995;35(9):1337–44. Epub 1995/05/01.

    CAS  PubMed  Google Scholar 

  57. Napper GA, Brennan NA, Barrington M, Squires MA, Vessey GA, Vingrys AJ. The effect of an interrupted daily period of normal visual stimulation on form deprivation myopia in chicks. Vision Res. 1997;37(12):1557–64. Epub 1997/06/01.

    CAS  PubMed  Google Scholar 

  58. Shaikh AW, Siegwart Jr JT, Norton TT. Effect of interrupted lens wear on compensation for a minus lens in tree shrews. Optom Vis Sci. 1999;76(5):308–15. Epub 1999/06/22.

    CAS  PubMed  Google Scholar 

  59. Qiao-Grider Y, Hung LF, Kee CS, Ramamirtham R, Smith 3rd EL. Normal ocular development in young rhesus monkeys (Macaca mulatta). Vision Res. 2007;47(11):1424–44. Epub 2007/04/10.

    PubMed  PubMed Central  Google Scholar 

  60. Qiao-Grider Y, Hung LF, Kee CS, Ramamirtham R, Smith 3rd EL. Nature of the refractive errors in rhesus monkeys (Macaca mulatta) with experimentally induced ametropias. Vision Res. 2010;50(18):1867–81. Epub 2010/07/06.

    PubMed  PubMed Central  Google Scholar 

  61. Norton TT, Amedo AO, Siegwart Jr JT. The effect of age on compensation for a negative lens and recovery from lens-induced myopia in tree shrews (Tupaia glis belangeri). Vision Res. 2010;50(6):564–76. Epub 2010/01/05.

    PubMed  PubMed Central  Google Scholar 

  62. Howlett MH, McFadden SA. Emmetropization and schematic eye models in developing pigmented guinea pigs. Vision Res. 2007;47(9):1178–90. Epub 2007/03/16.

    PubMed  Google Scholar 

  63. Schaeffel F, Burkhardt E, Howland HC, Williams RW. Measurement of refractive state and deprivation myopia in two strains of mice. Optom Vis Sci. 2004;81(2):99–110. Epub 2004/05/07.

    PubMed  Google Scholar 

  64. Zhou X, Qu J, Xie R, Wang R, Jiang L, Zhao H, et al. Normal development of refractive state and ocular dimensions in guinea pigs. Vision Res. 2006;46(18):2815–23. Epub 2006/05/26.

    PubMed  Google Scholar 

  65. Zhou X, Shen M, Xie J, Wang J, Jiang L, Pan M, et al. The development of the refractive status and ocular growth in C57BL/6 mice. Invest Ophthalmol Vis Sci. 2008;49(12):5208–14. Epub 2008/08/12.

    PubMed  Google Scholar 

  66. McBrien NA, Norton TT. The development of experimental myopia and ocular component dimensions in monocularly lid-sutured tree shrews (Tupaia belangeri). Vision Res. 1992;32(5):843–52. Epub 1992/05/01.

    CAS  PubMed  Google Scholar 

  67. Marsh-Tootle WL, Norton TT. Refractive and structural measures of lid-suture myopia in tree shrew. Invest Ophthalmol Vis Sci. 1989;30(10):2245–57. Epub 1989/10/01.

    CAS  PubMed  Google Scholar 

  68. Rada JA, Shelton S, Norton TT. The sclera and myopia. Exp Eye Res. 2006;82(2):185–200. Epub 2005/10/06.

    PubMed  Google Scholar 

  69. McBrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res. 2003;22(3):307–38. Epub 2003/07/11.

    CAS  PubMed  Google Scholar 

  70. Troilo D, Gottlieb MD, Wallman J. Visual deprivation causes myopia in chicks with optic nerve section. Curr Eye Res. 1987;6(8):993–9. Epub 1987/08/01.

    CAS  PubMed  Google Scholar 

  71. Wallman J, Gottlieb MD, Rajaram V, Fugate-Wentzek LA. Local retinal regions control local eye growth and myopia. Science. 1987;237(4810):73–7. Epub 1987/07/03.

    CAS  PubMed  Google Scholar 

  72. Diether S, Schaeffel F. Local changes in eye growth induced by imposed local refractive error despite active accommodation. Vision Res. 1997;37(6):659–68. Epub 1997/03/01.

    CAS  PubMed  Google Scholar 

  73. Wallman J, Wildsoet C, Xu A, Gottlieb MD, Nickla DL, Marran L, et al. Moving the retina: choroidal modulation of refractive state. Vision Res. 1995;35(1):37–50. Epub 1995/01/01.

    CAS  PubMed  Google Scholar 

  74. Wildsoet C, Wallman J. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vision Res. 1995;35(9):1175–94. Epub 1995/05/01.

    CAS  PubMed  Google Scholar 

  75. Troilo D, Nickla DL, Wildsoet CF. Choroidal thickness changes during altered eye growth and refractive state in a primate. Invest Ophthalmol Vis Sci. 2000;41(6):1249–58. Epub 2000/05/08.

    CAS  PubMed  Google Scholar 

  76. Chakraborty R, Read SA, Collins MJ. Monocular myopic defocus and daily changes in axial length and choroidal thickness of human eyes. Exp Eye Res. 2012;103:47–54. Epub 2012/09/14.

    CAS  PubMed  Google Scholar 

  77. Chakraborty R, Read SA, Collins MJ. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics. Invest Ophthalmol Vis Sci. 2011;52(8):5121–9. Epub 2011/05/17.

    PubMed  Google Scholar 

  78. Nickla DL. Transient increases in choroidal thickness are consistently associated with brief daily visual stimuli that inhibit ocular growth in chicks. Exp Eye Res. 2007;84(5):951–9. Epub 2007/03/31.

    CAS  PubMed  Google Scholar 

  79. Nickla DL, Damyanova P, Lytle G. Inhibiting the neuronal isoform of nitric oxide synthase has similar effects on the compensatory choroidal and axial responses to myopic defocus in chicks as does the non-specific inhibitor L-NAME. Exp Eye Res. 2009;88(6):1092–9. Epub 2009/05/20.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nickla DL, Totonelly K, Dhillon B. Dopaminergic agonists that result in ocular growth inhibition also elicit transient increases in choroidal thickness in chicks. Exp Eye Res. 2010;91(5):715–20. Epub 2010/08/31.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Nickla DL, Wilken E, Lytle G, Yom S, Mertz J. Inhibiting the transient choroidal thickening response using the nitric oxide synthase inhibitor l-NAME prevents the ameliorative effects of visual experience on ocular growth in two different visual paradigms. Exp Eye Res. 2006;83(2):456–64. Epub 2006/04/26.

    CAS  PubMed  Google Scholar 

  82. Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29(2):144–68. Epub 2010/01/02.

    PubMed  PubMed Central  Google Scholar 

  83. Sorsby A, Sheridan M, Leary GA. Refraction and its components in twins. Memo Med Res Counc. 1961;301(Special):1–43.

    Google Scholar 

  84. Morgan IG, Ohno-Matsui K, Saw SM. Myopia. Lancet. 2012;379:1739–48.

    PubMed  Google Scholar 

  85. Hawthorne FA, Young TL. Genetic contributions to myopic refractive error: insights from human studies and supporting evidence from animal models. Exp Eye Res. 2013;114:141–9.

    CAS  PubMed  Google Scholar 

  86. Wojciechowski R. Nature and nurture: the complex genetics of myopia and refractive error. Clin Genet. 2011;79(4):301–20. Epub 2010/12/16.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ashby RS, Morgan IG. Integrating data from human epidemiology and genetics with data from animal studies to define growth control pathways. Exp Eye Res. 2013; submitted for publication.

    Google Scholar 

  88. Kiefer AK, Tung JY, Do CB, Hinds DA, Mountain JL, Francke U, et al. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. PLoS Genet. 2013;9(2):e1003299. Epub 2013/03/08.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Verhoeven VJ, Hysi PG, Wojciechowski R, Fan Q, Guggenheim JA, Hohn R, et al. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat Genet. 2013;45(3):314–8. Epub 2013/02/12.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hysi PG, Young TL, Mackey DA, Andrew T, Fernandez-Medarde A, Solouki AM, et al. A genome-wide association study for myopia and refractive error identifies a susceptibility Locus at 15q25. Nat Genet. 2010;42(10):902–5. Epub 2010/09/14.

    CAS  PubMed  Google Scholar 

  91. Fernandez-Medarde A, Barhoum R, Riquelme R, Porteros A, Nunez A, de Luis A, et al. RasGRF1 disruption causes retinal photoreception defects and associated transcriptomic alterations. J Neurochem. 2009;110(2):641–52. Epub 2009/05/22.

    CAS  PubMed  Google Scholar 

  92. Solouki AM, Verhoeven VJ, van Duijn CM, Verkerk AJ, Ikram MK, Hysi PG, et al. A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14. Nat Genet. 2010;42(10):897–901. Epub 2010/09/14.

    CAS  PubMed  Google Scholar 

  93. Witkovsky P. Dopamine and retinal function. Doc Ophthalmol. 2004;108(1):17–40. Epub 2004/04/24.

    PubMed  Google Scholar 

  94. Stone RA, Khurana TS. Gene profiling in experimental models of eye growth: clues to myopia pathogenesis. Vision Res. 2010;50(23):2322–33. Epub 2010/04/07.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Stone RA, Pardue MT, Iuvone PM, Khurana TS. Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms. Exp Eye Res. 2013;114:35–47.

    CAS  PubMed  Google Scholar 

  96. Chen YP, Hocking PM, Wang L, Povazay B, Prashar A, To CH, et al. Selective breeding for susceptibility to myopia reveals a gene-environment interaction. Invest Ophthalmol Vis Sci. 2011;52(7):4003–11. Epub 2011/03/26.

    PubMed  Google Scholar 

  97. Chen YP, Prashar A, Erichsen JT, To CH, Hocking PM, Guggenheim JA. Heritability of ocular component dimensions in chickens: genetic variants controlling susceptibility to experimentally induced myopia and pretreatment eye size are distinct. Invest Ophthalmol Vis Sci. 2011;52(7):4012–20. Epub 2011/03/26.

    PubMed  Google Scholar 

  98. Chen YP, Prashar A, Hocking PM, Erichsen JT, To CH, Schaeffel F, et al. Sex, eye size, and the rate of myopic eye growth due to form deprivation in outbred white leghorn chickens. Invest Ophthalmol Vis Sci. 2010;51(2):651–7. Epub 2009/09/10.

    PubMed  Google Scholar 

  99. Bedrossian RH. The effect of atropine on myopia. Ophthalmology. 1979;86(5):713–9. Epub 1979/05/01.

    CAS  PubMed  Google Scholar 

  100. Chia A, Chua WH, Cheung YB, Wong WL, Lingham A, Fong A, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (atropine for the treatment of myopia 2). Ophthalmology. 2012;119(2):347–54.

    PubMed  Google Scholar 

  101. Chua WH, Balakrishnan V, Chan YH, Tong L, Ling Y, Quah BL, et al. Atropine for the treatment of childhood myopia. Ophthalmology. 2006;113(12):2285–91. Epub 2006/09/26.

    PubMed  Google Scholar 

  102. Fang YT, Chou YJ, Pu C, Lin PJ, Liu TL, Huang N, et al. Prescription of atropine eye drops among children diagnosed with myopia in Taiwan from 2000 to 2007: a nationwide study. Eye (Lond). 2013;27(3):418–24. Epub 2013/01/05.

    CAS  Google Scholar 

  103. Lind GJ, Chew SJ, Marzani D, Wallman J. Muscarinic acetylcholine receptor antagonists inhibit chick scleral chondrocytes. Invest Ophthalmol Vis Sci. 1998;39(12):2217–31. Epub 1998/11/06.

    CAS  PubMed  Google Scholar 

  104. Fischer AJ, Miethke P, Morgan IG, Stell WK. Cholinergic amacrine cells are not required for the progression and atropine-mediated suppression of form-deprivation myopia. Brain Res. 1998;794(1):48–60. Epub 1998/06/19.

    CAS  PubMed  Google Scholar 

  105. Millar TJ, Ishimoto I, Boelen M, Epstein ML, Johnson CD, Morgan IG. The toxic effects of ethylcholine mustard aziridinium ion on cholinergic cells in the chicken retina. J Neurosci. 1987;7(2):343–56. Epub 1987/02/01.

    CAS  PubMed  Google Scholar 

  106. Fischer AJ, McGuire JJ, Schaeffel F, Stell WK. Light- and focus-dependent expression of the transcription factor ZENK in the chick retina. Nat Neurosci. 1999;2(8):706–12. Epub 1999/07/21.

    CAS  PubMed  Google Scholar 

  107. Ashby R, McCarthy CS, Maleszka R, Megaw P, Morgan IG. A muscarinic cholinergic antagonist and a dopamine agonist rapidly increase ZENK mRNA expression in the form-deprived chicken retina. Exp Eye Res. 2007;85(1):15–22. Epub 2007/05/15.

    CAS  PubMed  Google Scholar 

  108. Cottriall CL, Truong HT, McBrien NA. Inhibition of myopia development in chicks using himbacine: a role for M(4) receptors? Neuroreport. 2001;12(11):2453–6. Epub 2001/08/10.

    CAS  PubMed  Google Scholar 

  109. Arumugam B, McBrien NA. Muscarinic antagonist control of myopia: evidence for M4 and M1 receptor-based pathways in the inhibition of experimentally-induced axial myopia in the tree shrew. Invest Ophthalmol Vis Sci. 2012;53(9):5827–37. Epub 2012/07/28.

    CAS  PubMed  Google Scholar 

  110. Yin GC, Gentle A, McBrien NA. Muscarinic antagonist control of myopia: a molecular search for the M1 receptor in chick. Mol Vis. 2004;10:787–93. Epub 2004/11/05.

    CAS  PubMed  Google Scholar 

  111. Chou AC, Shih YF, Ho TC, Lin LL. The effectiveness of 0.5% atropine in controlling high myopia in children. J Ocul Pharmacol Ther. 1997;13(1):61–7.

    CAS  PubMed  Google Scholar 

  112. Fan DS, Lam DS, Chan CK, Fan AH, Cheung EY, Rao SK. Topical atropine in retarding myopic progression and axial length growth in children with moderate to severe myopia: a pilot study. Jpn J Ophthalmol. 2007;51(1):27–33. Epub 2007/02/14.

    CAS  PubMed  Google Scholar 

  113. Fang PC, Chung MY, Yu HJ, Wu PC. Prevention of myopia onset with 0.025% atropine in premyopic children. J Ocul Pharmacol Ther. 2010;26(4):341–5.

    CAS  PubMed  Google Scholar 

  114. Song YY, Wang H, Wang BS, Qi H, Rong ZX, Chen HZ. Atropine in ameliorating the progression of myopia in children with mild to moderate myopia: a meta-analysis of controlled clinical trials. J Ocul Pharmacol Ther. 2011;27(4):361–8. Epub 2011/06/09.

    CAS  PubMed  Google Scholar 

  115. Tong L, Huang XL, Koh AL, Zhang X, Tan DT, Chua WH. Atropine for the treatment of childhood myopia: effect on myopia progression after cessation of atropine. Ophthalmology. 2009;116(3):572–9. Epub 2009/01/27.

    PubMed  Google Scholar 

  116. Ashby R, Ohlendorf A, Schaeffel F. The effect of ambient illuminance on the development of deprivation myopia in chicks. Invest Ophthalmol Vis Sci. 2009;50(11):5348–54. Epub 2009/06/12.

    PubMed  Google Scholar 

  117. McCarthy CS, Megaw P, Devadas M, Morgan IG. Dopaminergic agents affect the ability of brief periods of normal vision to prevent form-deprivation myopia. Exp Eye Res. 2007;84(1):100–7. Epub 2006/11/11.

    CAS  PubMed  Google Scholar 

  118. Zhu X, Winawer JA, Wallman J. Potency of myopic defocus in spectacle lens compensation. Invest Ophthalmol Vis Sci. 2003;44(7):2818–27. Epub 2003/06/26.

    PubMed  Google Scholar 

  119. Tse DY, Lam CS, Guggenheim JA, Lam C, Li KK, Liu Q, et al. Simultaneous defocus integration during refractive development. Invest Ophthalmol Vis Sci. 2007;48(12):5352–9. Epub 2007/12/07.

    PubMed  Google Scholar 

  120. Tse DY, To CH. Graded competing regional myopic and hyperopic defocus produces summated emmetropization set points in chick. Invest Ophthalmol Vis Sci. 2011;52:8056–62.

    PubMed  Google Scholar 

  121. Flitcroft DI. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res. 2012;31(6):622–60. Epub 2012/07/10.

    CAS  PubMed  Google Scholar 

  122. Hoogerheide J, Rempt F, Hoogenboom WP. Acquired myopia in young pilots. Ophthalmologica. 1971;163(4):209–15. Epub 1971/01/01.

    CAS  PubMed  Google Scholar 

  123. Huang J, Hung LF, Smith 3rd EL. Effects of foveal ablation on the pattern of peripheral refractive errors in normal and form-deprived infant rhesus monkeys (Macaca mulatta). Invest Ophthalmol Vis Sci. 2011;52(9):6428–34. Epub 2011/06/23.

    PubMed  Google Scholar 

  124. Smith 3rd EL, Hung LF, Huang J, Blasdel TL, Humbird TL, Bockhorst KH. Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms. Invest Ophthalmol Vis Sci. 2010;51(8):3864–73. Epub 2010/03/12.

    PubMed  Google Scholar 

  125. Smith 3rd EL, Hung LF, Huang J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vision Res. 2009;49(19):2386–92. Epub 2009/07/28.

    PubMed  PubMed Central  Google Scholar 

  126. Smith 3rd EL, Ramamirtham R, Qiao-Grider Y, Hung LF, Huang J, Kee CS, et al. Effects of foveal ablation on emmetropization and form-deprivation myopia. Invest Ophthalmol Vis Sci. 2007;48(9):3914–22. Epub 2007/08/29.

    PubMed  PubMed Central  Google Scholar 

  127. Smith 3rd EL, Kee CS, Ramamirtham R, Qiao-Grider Y, Hung LF. Peripheral vision can influence eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci. 2005;46(11):3965–72. Epub 2005/10/27.

    PubMed  PubMed Central  Google Scholar 

  128. Smith 3rd EL. Prentice award lecture 2010: a case for peripheral optical treatment strategies for myopia. Optom Vis Sci. 2011;88(9):1029–44. Epub 2011/07/13.

    PubMed  PubMed Central  Google Scholar 

  129. Smith 3rd EL. Optical treatment strategies to slow myopia progression: effects of the visual extent of the optical treatment zone. Exp Eye Res. 2013;114:77–88.

    CAS  PubMed  Google Scholar 

  130. Mutti DO, Hayes JR, Mitchell GL, Jones LA, Moeschberger ML, Cotter SA, et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol Vis Sci. 2007;48(6):2510–9. Epub 2007/05/26.

    PubMed  PubMed Central  Google Scholar 

  131. Sng CC, Lin XY, Gazzard G, Chang B, Dirani M, Chia A, et al. Peripheral refraction and refractive error in Singapore Chinese children. Invest Ophthalmol Vis Sci. 2011;52(2):1181–90. Epub 2010/10/12.

    PubMed  Google Scholar 

  132. Sng CC, Lin XY, Gazzard G, Chang B, Dirani M, Lim L, et al. Change in peripheral refraction over time in Singapore Chinese children. Invest Ophthalmol Vis Sci. 2011;52(11):7880–7. Epub 2011/08/30.

    PubMed  Google Scholar 

  133. Rosen R, Lundstrom L, Unsbo P, Atchison DA. Have we misinterpreted the study of Hoogerheide et al. (1971)? Optom Vis Sci. 2012;89(8):1235–7.

    PubMed  Google Scholar 

  134. Sankaridurg P, Donovan L, Varnas S, Ho A, Chen X, Martinez A, et al. Spectacle lenses designed to reduce progression of myopia: 12-month results. Optom Vis Sci. 2010;87(9):631–41. Epub 2010/07/14.

    PubMed  Google Scholar 

  135. Sankaridurg P, Holden B, Smith 3rd E, Naduvilath T, Chen X, de la Jara PL, et al. Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results. Invest Ophthalmol Vis Sci. 2011;52(13):9362–7. Epub 2011/11/01.

    PubMed  Google Scholar 

  136. French AN, Ashby RS, Morgan IG, Rose KA. Time outdoors and the prevention of myopia. Exp Eye Res. 2013;114:58–68.

    CAS  PubMed  Google Scholar 

  137. Rose KA, Morgan IG, Ip J, Kifley A, Huynh S, Smith W, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008;115(8):1279–85. Epub 2008/02/26.

    PubMed  Google Scholar 

  138. Rose KA, Morgan IG, Smith W, Burlutsky G, Mitchell P, Saw SM. Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. Arch Ophthalmol. 2008;126(4):527–30. Epub 2008/04/17.

    PubMed  Google Scholar 

  139. Megaw P, Morgan I, Boelen M. Vitreal dihydroxyphenylacetic acid (DOPAC) as an index of retinal dopamine release. J Neurochem. 2001;76(6):1636–44. Epub 2001/03/22.

    CAS  PubMed  Google Scholar 

  140. Megaw PL, Boelen MG, Morgan IG, Boelen MK. Diurnal patterns of dopamine release in chicken retina. Neurochem Int. 2006;48(1):17–23. Epub 2005/09/29.

    CAS  PubMed  Google Scholar 

  141. Megaw PL, Morgan IG, Boelen MK. Dopaminergic behaviour in chicken retina and the effect of form deprivation. Aust N Z J Ophthalmol. 1997;25 Suppl 1:S76–8. Epub 1997/05/01.

    PubMed  Google Scholar 

  142. Smith 3rd EL, Hung LF, Huang J. Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Invest Ophthalmol Vis Sci. 2012;53(1):421–8. Epub 2011/12/16.

    PubMed  Google Scholar 

  143. Ashby RS, Schaeffel F. The effect of bright light on lens compensation in chicks. Invest Ophthalmol Vis Sci. 2010;51(10):5247–53. Epub 2010/05/07.

    PubMed  Google Scholar 

  144. Nickla DL, Totonelly K. Dopamine antagonists and brief vision distinguish lens-induced- and form-deprivation-induced myopia. Exp Eye Res. 2011;93(5):782–5. Epub 2011/08/30.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Jones LA, Sinnott LT, Mutti DO, Mitchell GL, Moeschberger ML, Zadnik K. Parental history of myopia, sports and outdoor activities, and future myopia. Invest Ophthalmol Vis Sci. 2007;48(8):3524–32. Epub 2007/07/27.

    PubMed  PubMed Central  Google Scholar 

  146. French AN, Morgan IG, Mitchell P, Rose KA. Risk factors for incident myopia in Australian school children: the Sydney Adolescent Vascular and Eye Study. Ophthalmology. 2013;120(10):2100–8.

    PubMed  Google Scholar 

  147. Ben-Simon GJ, Peiss M, Anis E, Nakra T, Luski A, Spierer A. Spectacle use and reduced unaided vision in third grade students: a comparative study in different educational settings. Clin Exp Optom. 2004;87(3):175–9. Epub 2004/06/10.

    PubMed  Google Scholar 

  148. Zylbermann R, Landau D, Berson D. The influence of study habits on myopia in Jewish teenagers. J Pediatr Ophthalmol Strabismus. 1993;30(5):319–22. Epub 1993/09/01.

    CAS  PubMed  Google Scholar 

  149. Boelen MK, Boelen MG, Marshak DW. Light-stimulated release of dopamine from the primate retina is blocked by 1-2-amino-4-phosphonobutyric acid (APB). Vis Neurosci. 1998;15(1):97–103. Epub 1998/02/11.

    CAS  PubMed  Google Scholar 

  150. Morgan IG, Boelen MK. Complexity of dopaminergic function in the retinal dark–light switch. Aust N Z J Ophthalmol. 1996;24(2 Suppl):56–8. Epub 1996/05/01.

    CAS  PubMed  Google Scholar 

  151. Morgan IG, Boelen MK. A retinal dark–light switch: a review of the evidence. Vis Neurosci. 1996;13(3):399–409. Epub 1996/05/01.

    CAS  PubMed  Google Scholar 

  152. Morgan IG, Boelen MK. A fundamental step-transition in retinal function at low light intensities. Aust N Z J Ophthalmol. 1997;25 Suppl 1:S70–2. Epub 1997/05/01.

    PubMed  Google Scholar 

  153. Smith 3rd EL, Fox DA, Duncan GC. Refractive-error changes in kitten eyes produced by chronic on-channel blockade. Vision Res. 1991;31(5):833–44. Epub 1991/01/01.

    PubMed  Google Scholar 

  154. Bech-Hansen NT, Naylor MJ, Maybaum TA, Sparkes RL, Koop B, Birch DG, et al. Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat Genet. 2000;26(3):319–23. Epub 2000/11/04.

    CAS  PubMed  Google Scholar 

  155. Pardue MT, Faulkner AE, Fernandes A, Yin H, Schaeffel F, Williams RW, et al. High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect. Invest Ophthalmol Vis Sci. 2008;49(2):706–12. Epub 2008/02/01.

    PubMed  PubMed Central  Google Scholar 

  156. Kothmann WW, Massey SC, O’Brien J. Dopamine-stimulated dephosphorylation of connexin 36 mediates AII amacrine cell uncoupling. J Neurosci. 2009;29(47):14903–11. Epub 2009/11/27.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Urschel S, Hoher T, Schubert T, Alev C, Sohl G, Worsdorfer P, et al. Protein kinase A-mediated phosphorylation of connexin36 in mouse retina results in decreased gap junctional communication between AII amacrine cells. J Biol Chem. 2006;281(44):33163–71. Epub 2006/09/08.

    CAS  PubMed  Google Scholar 

  158. Chia A, Li W, Tan D, Luu CD. Full-field electroretinogram findings in children in the atropine treatment for myopia (ATOM2) study. Doc Ophthalmol. 2013;126:177–86.

    PubMed  Google Scholar 

  159. Ho WC, Kee CS, Chan HH. Myopia progression in children is linked with reduced foveal mfERG response. Invest Ophthalmol Vis Sci. 2012;53(9):5320–5. Epub 2012/07/05.

    PubMed  Google Scholar 

  160. Ho WC, Kee CS, Chan HH. Myopic children have central reduction in high contrast multifocal ERG response, while adults have paracentral reduction in low contrast response. Invest Ophthalmol Vis Sci. 2012;53(7):3695–702. Epub 2012/05/10.

    PubMed  Google Scholar 

  161. Wu PC, Tsai CL, Hu CH, Yang YH. Effects of outdoor activities on myopia among rural school children in Taiwan. Ophthalmic Epidemiol. 2010;17(5):338–42. Epub 2010/09/28.

    PubMed  Google Scholar 

  162. Yi JH, Li RR. [Influence of near-work and outdoor activities on myopia Progression in school children]. Zhongguo Dang Dai Er Ke Za Zhi. 2011;13(1):32–5.

    PubMed  Google Scholar 

  163. McBrien NA. Regulation of scleral metabolism in myopia and the role of transforming growth factor-beta. Exp Eye Res. 2013;114:128–40.

    CAS  PubMed  Google Scholar 

  164. Hu J, Cui D, Yang X, Wang S, Hu S, Li C, et al. Bone morphogenetic protein-2: a potential regulator in scleral remodeling. Mol Vis. 2008;14:2373–80. Epub 2008/12/23.

    CAS  PubMed  Google Scholar 

  165. Wang Q, Zhao G, Xing S, Zhang L, Yang X. Role of bone morphogenetic proteins in form-deprivation myopia sclera. Mol Vis. 2011;17:647–57. Epub 2011/03/16.

    CAS  PubMed  Google Scholar 

  166. Zhang Y, Liu Y, Wildsoet CF. Bidirectional, optical sign-dependent regulation of BMP2 gene expression in chick retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2012;53(10):6072–80. Epub 2012/08/11.

    CAS  PubMed  Google Scholar 

  167. Mertz JR, Wallman J. Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth. Exp Eye Res. 2000;70(4):519–27. Epub 2000/06/24.

    CAS  PubMed  Google Scholar 

  168. Guggenheim JA, McBrien NA. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew. Invest Ophthalmol Vis Sci. 1996;37(7):1380–95. Epub 1996/06/01.

    CAS  PubMed  Google Scholar 

  169. Hall NF, Gale CR, Ye S, Martyn CN. Myopia and polymorphisms in genes for matrix metalloproteinases. Invest Ophthalmol Vis Sci. 2009;50(6):2632–6. Epub 2009/03/13.

    PubMed  Google Scholar 

  170. Wojciechowski R, Bailey-Wilson JE, Stambolian D. Association of matrix metalloproteinase gene polymorphisms with refractive error in Amish and Ashkenazi families. Invest Ophthalmol Vis Sci. 2010;51(10):4989–95. Epub 2010/05/21.

    PubMed  Google Scholar 

  171. Wojciechowski R, Yee SS, Simpson CL, Bailey-Wilson JE, Stambolian D. Matrix metalloproteinases and educational attainment in refractive error: evidence of gene-environment interactions in the Age-Related Eye Disease Study. Ophthalmology. 2013;120(2):298–305. Epub 2012/10/27.

    PubMed  PubMed Central  Google Scholar 

  172. Jobling AI, Gentle A, Metlapally R, McGowan BJ, McBrien NA. Regulation of scleral cell contraction by transforming growth factor-beta and stress: competing roles in myopic eye growth. J Biol Chem. 2009;284(4):2072–9. Epub 2008/11/18.

    CAS  PubMed  Google Scholar 

  173. McBrien NA, Jobling AI, Gentle A. Biomechanics of the sclera in myopia: extracellular and cellular factors. Optom Vis Sci. 2009;86(1):E23–30. Epub 2008/12/24.

    PubMed  Google Scholar 

  174. Metlapally R, Jobling AI, Gentle A, McBrien NA. Characterization of the integrin receptor subunit profile in the mammalian sclera. Mol Vis. 2006;12:725–34. Epub 2006/07/25.

    CAS  PubMed  Google Scholar 

  175. Nickla DL. Ocular diurnal rhythms and eye growth regulation: where we are 50 years after lauber. Exp Eye Res. 2013;114:25–34.

    CAS  PubMed  Google Scholar 

  176. Quinn GE, Shin CH, Maguire MG, Stone RA. Myopia and ambient lighting at night. Nature. 1999;399(6732):113–4. Epub 1999/05/21.

    CAS  PubMed  Google Scholar 

  177. McMahon G, Zayats T, Chen YP, Prashar A, Williams C, Guggenheim JA. Season of birth, daylight hours at birth, and high myopia. Ophthalmology. 2009;116(3):468–73. Epub 2009/01/23.

    PubMed  Google Scholar 

  178. Vannas AE, Ying GS, Stone RA, Maguire MG, Jormanainen V, Tervo T. Myopia and natural lighting extremes: risk factors in Finnish army conscripts. Acta Ophthalmol Scand. 2003;81(6):588–95. Epub 2003/12/03.

    PubMed  Google Scholar 

  179. Nickla DL, Wildsoet C, Wallman J. Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes. Exp Eye Res. 1998;66(2):163–81. Epub 1998/06/17.

    CAS  PubMed  Google Scholar 

  180. Nickla DL, Wildsoet CF, Troilo D. Endogenous rhythms in axial length and choroidal thickness in chicks: implications for ocular growth regulation. Invest Ophthalmol Vis Sci. 2001;42(3):584–8. Epub 2001/02/27.

    CAS  PubMed  Google Scholar 

  181. Cahill GM, Grace MS, Besharse JC. Rhythmic regulation of retinal melatonin: metabolic pathways, neurochemical mechanisms, and the ocular circadian clock. Cell Mol Neurobiol. 1991;11(5):529–60. Epub 1991/10/01.

    CAS  PubMed  Google Scholar 

  182. Morgan RW, Speakman JS, Grimshaw SE. Inuit myopia: an environmentally induced “epidemic”? Can Med Assoc J. 1975;112(5):575–7. Epub 1975/03/08.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Young FA, Leary GA, Baldwin WR, West DC, Box RA, Harris E, et al. The transmission of refractive errors within eskimo families. Am J Optom Arch Am Acad Optom. 1969;46(9):676–85. Epub 1969/09/01.

    CAS  PubMed  Google Scholar 

  184. Seko Y, Shimizu M, Tokoro T. Retinoic acid increases in the retina of the chick with form deprivation myopia. Ophthalmic Res. 1998;30(6):361–7. Epub 1998/09/10.

    CAS  PubMed  Google Scholar 

  185. Seko Y, Shimokawa H, Tokoro T. In vivo and in vitro association of retinoic acid with form-deprivation myopia in the chick. Exp Eye Res. 1996;63(4):443–52. Epub 1996/10/01.

    CAS  PubMed  Google Scholar 

  186. Rada JA, Hollaway LR, Lam W, Li N, Napoli JL. Identification of RALDH2 as a visually regulated retinoic acid synthesizing enzyme in the chick choroid. Invest Ophthalmol Vis Sci. 2012;53(3):1649–62. Epub 2012/02/11.

    CAS  PubMed  Google Scholar 

  187. Mao JF, Liu SZ, Dou XQ. Retinoic acid metabolic change in retina and choroid of the guinea pig with lens-induced myopia. Int J Ophthalmol. 2012;5(6):670–4. Epub 2013/01/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. McFadden SA, Howlett MH, Mertz JR. Retinoic acid signals the direction of ocular elongation in the guinea pig eye. Vision Res. 2004;44(7):643–53. Epub 2004/01/31.

    CAS  PubMed  Google Scholar 

  189. Troilo D, Nickla DL, Mertz JR, Summers Rada JA. Change in the synthesis rates of ocular retinoic acid and scleral glycosaminoglycan during experimentally altered eye growth in marmosets. Invest Ophthalmol Vis Sci. 2006;47(5):1768–77. Epub 2006/04/28.

    PubMed  PubMed Central  Google Scholar 

  190. Yan DS, Zhou XT, Chen XY, Lu F, Wang J, Hu DN, et al. [Expression of retinoid acid receptors in human scleral fibroblasts and regulation of growth of fibroblasts by retinoic acid]. Zhonghua yan ke za zhi. 2007;43(8):750–3. Epub 2007/11/16.

    CAS  PubMed  Google Scholar 

  191. Li C, McFadden SA, Morgan I, Cui D, Hu J, Wan W, et al. All-trans retinoic acid regulates the expression of the extracellular matrix protein fibulin-1 in the guinea pig sclera and human scleral fibroblasts. Mol Vis. 2010;16:689–97. Epub 2010/04/21.

    CAS  PubMed  Google Scholar 

  192. Bitzer M, Feldkaemper M, Schaeffel F. Visually induced changes in components of the retinoic acid system in fundal layers of the chick. Exp Eye Res. 2000;70(1):97–106. Epub 2000/01/25.

    CAS  PubMed  Google Scholar 

  193. Rohrer B, Stell WK. Basic fibroblast growth factor (bFGF) and transforming growth factor beta (TGF-beta) act as stop and go signals to modulate postnatal ocular growth in the chick. Exp Eye Res. 1994;58(5):553–61. Epub 1994/05/01.

    CAS  PubMed  Google Scholar 

  194. Rohrer B, Iuvone PM, Stell WK. Stimulation of dopaminergic amacrine cells by stroboscopic illumination or fibroblast growth factor (bFGF, FGF-2) injections: possible roles in prevention of form-deprivation myopia in the chick. Brain Res. 1995;686(2):169–81. Epub 1995/07/24.

    CAS  PubMed  Google Scholar 

  195. Seko Y, Shimokawa H, Tokoro T. Expression of bFGF and TGF-beta 2 in experimental myopia in chicks. Invest Ophthalmol Vis Sci. 1995;36(6):1183–7. Epub 1995/05/01.

    CAS  PubMed  Google Scholar 

  196. Gentle A, McBrien NA. Retinoscleral control of scleral remodelling in refractive development: a role for endogenous FGF-2? Cytokine. 2002;18(6):344–8. Epub 2002/08/06.

    CAS  PubMed  Google Scholar 

  197. Ritchey ER, Zelinka CP, Tang J, Liu J, Fischer AJ. The combination of IGF1 and FGF2 and the induction of excessive ocular growth and extreme myopia. Exp Eye Res. 2012;99:1–16. Epub 2012/06/15.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Feldkaemper MP, Neacsu I, Schaeffel F. Insulin acts as a powerful stimulator of axial myopia in chicks. Invest Ophthalmol Vis Sci. 2009;50(1):13–23. Epub 2008/07/05.

    PubMed  Google Scholar 

  199. Zhu X, Wallman J. Opposite effects of glucagon and insulin on compensation for spectacle lenses in chicks. Invest Ophthalmol Vis Sci. 2009;50(1):24–36. Epub 2008/09/16.

    PubMed  PubMed Central  Google Scholar 

  200. An J, Hsi E, Zhou X, Tao Y, Juo SH, Liang CL. The FGF2 gene in a myopia animal model and human subjects. Mol Vis. 2012;18:471–8. Epub 2012/03/07.

    CAS  PubMed  Google Scholar 

  201. Hsi E, Chen KC, Chang WS, Yu ML, Liang CL, Juo SH. A functional polymorphism at the FGF10 gene is associated with extreme myopia. Invest Ophthalmol Vis Sci. 2013;54(5):3265–71. Epub 2013/04/20.

    CAS  PubMed  Google Scholar 

  202. Miyake M, Yamashiro K, Nakanishi H, Nakata I, Akagi-Kurashige Y, Tsujikawa A, et al. Insulin-like growth factor 1 is not associated with high myopia in a large Japanese cohort. Mol Vis. 2013;19:1074–81. Epub 2013/06/05.

    CAS  PubMed  Google Scholar 

  203. Rydzanicz M, Nowak DM, Karolak JA, Frajdenberg A, Podfigurna-Musielak M, Mrugacz M, et al. IGF-1 gene polymorphisms in Polish families with high-grade myopia. Mol Vis. 2011;17:2428–39. Epub 2011/10/07.

    CAS  PubMed  Google Scholar 

  204. Metlapally R, Ki CS, Li YJ, Tran-Viet KN, Abbott D, Malecaze F, et al. Genetic association of insulin-like growth factor-1 polymorphisms with high-grade myopia in an international family cohort. Invest Ophthalmol Vis Sci. 2010;51(9):4476–9. Epub 2010/05/04.

    PubMed  Google Scholar 

  205. Penha AM, Schaeffel F, Feldkaemper M. Insulin, insulin-like growth factor-1, insulin receptor, and insulin-like growth factor-1 receptor expression in the chick eye and their regulation with imposed myopic or hyperopic defocus. Mol Vis. 2011;17:1436–48. Epub 2011/06/10.

    CAS  PubMed  Google Scholar 

  206. Tang RH, Tan J, Deng ZH, Zhao SZ, Miao YB, Zhang WJ. Insulin-like growth factor-2 antisense oligonucleotides inhibits myopia by expression blocking of retinal insulin-like growth factor-2 in guinea pig. Clin Exp Ophthalmol. 2012;40(5):503–11. Epub 2011/09/10.

    Google Scholar 

  207. Stone RA, Liu J, Sugimoto R, Capehart C, Zhu X, Pendrak K. GABA, experimental myopia, and ocular growth in chick. Invest Ophthalmol Vis Sci. 2003;44(9):3933–46. Epub 2003/08/27.

    PubMed  Google Scholar 

  208. Chebib M, Hinton T, Schmid KL, Brinkworth D, Qian H, Matos S, et al. Novel, potent, and selective GABAC antagonists inhibit myopia development and facilitate learning and memory. J Pharmacol Exp Ther. 2009;328(2):448–57. Epub 2008/11/06.

    CAS  PubMed  Google Scholar 

  209. Schmid KL, Strasberg G, Rayner CL, Hartfield PJ. The effects and interactions of GABAergic and dopaminergic agents in the prevention of form deprivation myopia by brief periods of normal vision. Exp Eye Res. 2013;110:88–95.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian G. Morgan BSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morgan, I.G., Rose, K.A., Ashby, R.S. (2014). Animal Models of Experimental Myopia: Limitations and Synergies with Studies on Human Myopia. In: Spaide, R., Ohno-Matsui, K., Yannuzzi, L. (eds) Pathologic Myopia. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8338-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8338-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8337-3

  • Online ISBN: 978-1-4614-8338-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics