Skip to main content

Downlink Capacity of Vehicular Networks with Access Infrastructure

  • Chapter
  • First Online:
Capacity Analysis of Vehicular Communication Networks

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 877 Accesses

Abstract

Wireless access infrastructure, such as Wi-Fi access points and cellular base stations, plays a vital role in offering pervasive Internet services to vehicles. However, the deployment costs of different access infrastructure are highly variable. In this chapter, we analyze the downlink capacity of vehicles and investigate the capacity-cost tradeoffs for the network in which access infrastructure is deployed to provide a downlink data pipe to all vehicles. Three alternatives of wireless access infrastructure are considered, i.e., cellular base stations (BSs), wireless mesh backbones (WMBs), and roadside access points (RAPs). We first derive a lower bound of downlink capacity for each type of access infrastructure. We then present a case study based on a ideal city grid of 400 km2 with 0.4 million vehicles, in which we examine the capacity-cost tradeoffs for different deployment solutions in terms of both capital expenditures (CAPEX) and operational expenditures (OPEX). Rich implications from the results provide fundamental guidance on the choice of cost-effective wireless access infrastructure for the emerging vehicular networking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    X is used to represent a ratio relationship rather that a specific value.

References

  1. D. Jiang, V. Taliwal, A. Meier, W. Holfelder, R. Herrtwich, Design of 5.9 GHz DSRC-based vehicular safety communication. IEEE Wirel. Commun. 13(5), 36–43 (2006)

    Google Scholar 

  2. F. Martinez, C. Toh, J. Cano, C. Calafate, P. Manzoni, Emergency services in future intelligent transportation systems based on vehicular communication networks. IEEE Intell. Transp. Syst. Mag. 2(2), 6–20 (2010)

    Google Scholar 

  3. F. Bai, B. Krishnamachari, Exploiting the wisdom of the crowd: localized, distributed information-centric VANETs. IEEE Commun. Mag. 48(5), 138–146 (2010)

    Google Scholar 

  4. R. Lu, X. Lin, T. Luan, X. Liang, X. Shen, Pseudonym changing at social spots: an effective strategy for location privacy in VANETs. IEEE Trans. Veh. Technol. 61(1), 86–96 (2012)

    Google Scholar 

  5. N. Lu, N. Cheng, N. Zhang, X. Shen, J.W. Mark, VeMail: a message handling system towards efficient transportation management, in Proceedings of IEEE WCNC, Shanghai, Apr 2013

    Google Scholar 

  6. J. Lin, S. Chen, Y. Shih, S. Chen, A study on remote on-line diagnostic system for vehicles by integrating the technology of OBD, GPS, and 3G. World Acad. Sci. Eng. Technol. 56, 56 (2009)

    Google Scholar 

  7. M. Ramadan, M. Al-Khedher, S. Al-Kheder, Intelligent anti-theft and tracking system for automobiles. Int. J. Mach. Learn. Comput. 2(1), 88–92 (2012)

    Google Scholar 

  8. KPMG’s global automotive executive survey, [Online].Available: http://www.kpmg.com/GE/en/IssuesAndInsights/ArticlesPublications/Documents/Global-automotive-executive-survey-2012.pdf

  9. B. Chen, M. Chan, Mobtorrent: a framework for mobile internet access from vehicles, in Proceedings of IEEE INFOCOM, Rio de Janeiro, Apr 2009

    Google Scholar 

  10. T. Luan, X. Ling, X. Shen, MAC in motion: impact of mobility on the MAC of drive-thru internet. IEEE Trans. Mobile Comput. 11(2), 305–319 (2011)

    Google Scholar 

  11. V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan, S. Madden, A measurement study of vehicular internet access using in situ wi-fi networks, in Proceedings of ACM MobiCom, Los Angeles, 2006

    Google Scholar 

  12. A. Mahajan, N. Potnis, K. Gopalan, A. Wang, Modeling VANET deployment in urban settings, in Proceedings of ACM MSWiM, Chania, 2007, pp. 151–158

    Google Scholar 

  13. T. Luan, L. Cai, J. Chen, X. Shen, F. Bai, VTube: towards the media rich city life with autonomous vehicular content distribution, in Proceedings of IEEE SECON, Salt Lake City, June 2011

    Google Scholar 

  14. G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, T. Weil, Vehicular networking: a survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Commun. Surv. Tutor. 13(4), 1–33 (2011)

    Google Scholar 

  15. J. Kenney, Dedicated short-range communications (DSRC) standards in the united states. Proc. IEEE 99(7), 1162–1182 (2011)

    Google Scholar 

  16. H. Hartenstein, K. Laberteaux, I. Ebrary, VANET: Vehicular Applications and Inter-networking Technologies (Wiley Online Library, Chichester, 2010)

    Google Scholar 

  17. H. Hartenstein, K. Laberteaux, A tutorial survey on vehicular ad hoc networks. IEEE Commun. Mag. 46(6), 164–171 (2008)

    Google Scholar 

  18. A. El Gamal, Y. Kim, Network Information Theory (Cambridge University Press, Cambridge/New York, 2011)

    MATH  Google Scholar 

  19. J. Andrews, S. Shakkottai, R. Heath, N. Jindal, M. Haenggi, R. Berry, D. Guo, M. Neely, S. Weber, S. Jafar et al., Rethinking information theory for mobile ad hoc networks. IEEE Commun. Mag. 46(12), 94–101 (2008)

    Google Scholar 

  20. C. Shannon, A mathematical theory of communication. ACM SIGMOBILE Mobile Comput. Commun. Rev. 5(1), 3–55 (2001)

    Google Scholar 

  21. T. Cover, A. Gamal, Capacity theorems for the relay channel. IEEE Trans. Inf. Theory 25(5), 572–584 (1979)

    MATH  Google Scholar 

  22. P. Gupta, P. Kumar, The capacity of wireless networks. IEEE Trans. Inf. Theory 46(2), 388–404 (2000)

    MathSciNet  MATH  Google Scholar 

  23. A. Goldsmith, M. Effros, R. Koetter, M. Médard, A. Ozdaglar, L. Zheng, Beyond shannon: the quest for fundamental performance limits of wireless ad hoc networks. IEEE Commun. Mag. 49(5), 195–205 (2011)

    Google Scholar 

  24. P. Li, M. Pan, Y. Fang, The capacity of three-dimensional wireless ad hoc networks, in Proceedings of IEEE INFOCOM, Shanghai, Apr 2011

    Google Scholar 

  25. H. Pishro-Nik, A. Ganz, D. Ni, The capacity of vehicular ad hoc networks, in Proceedings of Allerton Conference, University of Illinois at Urbana-Champaign, Monticello, Illinois, USA 2007

    Google Scholar 

  26. M. Nekoui, A. Eslami, H. Pishro-Nik, Scaling laws for distance limited communications in vehicular ad hoc networks, in Proceedings of IEEE ICC, Beijing, 2008, pp. 2253–2257

    Google Scholar 

  27. G. Zhang, Y. Xu, X. Wang, X. Tian, J. Liu, X. Gan, H. Yu, L. Qian, Multicast capacity for hybrid VANETs with directional antenna and delay constraint. IEEE J. Sel. Areas Commun. 30(4), 818–833 (2012)

    Google Scholar 

  28. M. Wang, H. Shan, L. Cai, N. Lu, X. Shen, F. Bai, Throughput capacity of VANETs by exploiting mobility diversity, in Proceedings of IEEE ICC, Ottawa, June 2012

    Google Scholar 

  29. N. Lu, T. Luan, M. Wang, X. Shen, F. Bai, Bounds of asymptotic performance limits of social-proximity vehicular networks. IEEE/ACM Trans. Netw. to appear

    Google Scholar 

  30. N. Lu, N. Zhang, N. Cheng, X. Shen, J.W. Mark, F. Bai, Vehicles meet infrastructure: towards capacity-cost tradeoffs for vehicular access networks. IEEE Trans. Intell. Transp. Syst. to appear

    Google Scholar 

  31. T. Cover, J. Thomas, J. Wiley et al., Elements of Information Theory, vol. 306 (Wiley Online Library, John Wiley & Sons, Inc., Hoboken, New Jersey 1991)

    Google Scholar 

  32. M. Franceschetti, O. Dousse, D. Tse, P. Thiran, Closing the gap in the capacity of wireless networks via percolation theory. IEEE Trans. Inf. Theory 53(3), 1009–1018 (2007)

    MathSciNet  Google Scholar 

  33. S. Yi, Y. Pei, S. Kalyanaraman, On the capacity improvement of ad hoc wireless networks using directional antennas, in Proceedings of ACM MobiHoc, Annapolis, 2003

    Google Scholar 

  34. C. Peraki, S. Servetto, On the maximum stable throughput problem in random networks with directional antennas, in Proceedings of ACM MobiHoc, Annapolis, 2003

    Google Scholar 

  35. H. Sadjadpour, Z. Wang, J. Garcia-Luna-Aceves, The capacity of wireless ad hoc networks with multi-packet reception. IEEE Trans. Commun. 58(2), 600–610 (2010)

    Google Scholar 

  36. J. Garcia-Luna-Aceves, H. Sadjadpour, Z. Wang, Challenges: towards truly scalable ad hoc networks, in Proceedings of ACM MobiCom, Montreal, 2007

    Google Scholar 

  37. Z. Wang, H. Sadjadpour, J. Garcia-Luna-Aceves, The capacity and energy efficiency of wireless ad hoc networks with multi-packet reception, in Proceedings of MobiHoc, Hong Kong. (ACM, 2008), pp. 179–188

    Google Scholar 

  38. Z. Wang, H. Sadjadpour, J. Garcia-Luna-Aceves, Fundamental limits of information dissemination in wireless ad hoc networks–part II: multi-packet reception. IEEE Trans. Wirel. Commun. 10(3), 803–813 (2011)

    Google Scholar 

  39. S. Aeron, V. Saligrama, Wireless ad hoc networks: strategies and scaling laws for the fixed SNR regime. IEEE Trans. Inf. Theory 53(6), 2044–2059 (2007)

    MathSciNet  Google Scholar 

  40. A. Ozgur, O. Lévêque, D. Tse, Hierarchical cooperation achieves optimal capacity scaling in ad hoc networks. IEEE Trans. Inf. Theory 53(10), 3549–3572 (2007)

    Google Scholar 

  41. J. Ghaderi, L. Xie, X. Shen, Hierarchical cooperation in ad hoc networks: optimal clustering and achievable throughput. IEEE Trans. Inf. Theory 55(8), 3425–3436 (2009)

    MathSciNet  Google Scholar 

  42. U. Niesen, P. Gupta, D. Shah, On capacity scaling in arbitrary wireless networks. IEEE Trans. Inf. Theory 55(9), 3959–3982 (2009)

    MathSciNet  Google Scholar 

  43. M. Franceschetti, M. Migliore, P. Minero, The capacity of wireless networks: information-theoretic and physical limits. IEEE Trans. Inf. Theory 55(8), 3413–3424 (2009)

    MathSciNet  Google Scholar 

  44. S. Lee, S. Chung, Capacity scaling of wireless ad hoc networks: Shannon meets Maxwell. IEEE Trans. Inf. Theory 58(3), 1702–1715 (2012)

    MathSciNet  Google Scholar 

  45. K. Lu, S. Fu, Y. Qian, H. Chen, On capacity of random wireless networks with physical-layer network coding. IEEE J. Sel. Areas Commun. 27(5), 763–772 (2009)

    Google Scholar 

  46. J. Liu, D. Goeckel, D. Towsley, The throughput order of ad hoc networks employing network coding and broadcasting, in IEEE Proceedings of MILCOM, Washington, DC, Oct 2006

    Google Scholar 

  47. J. Liu, D. Goeckel, D. Towsley, Bounds on the gain of network coding and broadcasting in wireless networks, in IEEE Proceedings of INFOCOM, Anchorage, May 2007

    Google Scholar 

  48. A. Keshavarz-Haddadt, R. Riedi, Bounds on the benefit of network coding: throughput and energy saving in wireless networks, in IEEE Proceedings of INFOCOM, Phoenix, Mar 2008

    Google Scholar 

  49. J. Liu, D. Goeckel, D. Towsley, Bounds on the throughput gain of network coding in unicast and multicast wireless networks. IEEE J. Sel. Areas Commun. 27(5), 582–592 (2009)

    Google Scholar 

  50. R. Negi, A. Rajeswaran, Capacity of power constrained ad-hoc networks, in IEEE Proceedings of INFOCOM, Hong Kong, Mar 2004

    Google Scholar 

  51. X. Tang, Y. Hua, Capacity of ultra-wideband power-constrained ad hoc networks. IEEE Trans. Inf. Theory 54(2), 916–920 (2008)

    MathSciNet  Google Scholar 

  52. H. Zhang, J. Hou, Capacity of wireless ad-hoc networks under ultra wide band with power constraint, in IEEE Proceedings of INFOCOM, Miami, Mar 2005

    Google Scholar 

  53. M. Grossglauser, D. Tse, Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. Netw. 10(4), 477–486 (2002)

    Google Scholar 

  54. S. Diggavi, M. Grossglauser, D. Tse, Even one-dimensional mobility increases the capacity of wireless networks. IEEE Trans. Inf. Theory 51(11), 3947–3954 (2005)

    MathSciNet  Google Scholar 

  55. S. Jafar, Too much mobility limits the capacity of wireless ad hoc networks. IEEE Trans. Inf. Theory 51(11), 3954–3965 (2005)

    MathSciNet  Google Scholar 

  56. P. Kyasanur, N. Vaidya, Capacity of multi-channel wireless networks: impact of number of channels and interfaces, in Proceedings of ACM MobiCom, Cologne, 2005

    Google Scholar 

  57. P. Kyasanur, N. Vaidya, Capacity of multichannel wireless networks under the protocol model. IEEE/ACM Trans. Netw. 17(2), 515–527 (2009)

    Google Scholar 

  58. M. Kodialam, T. Nandagopal, Characterizing the capacity region in multi-radio multi-channel wireless mesh networks, in Proceedings of ACM MobiCom, Cologne, 2005

    Google Scholar 

  59. S. Toumpis, A. Goldsmith, Large wireless networks under fading, mobility, and delay constraints, in Proceeding of IEEE INFOCOM, Hongkong, Mar 2004

    Google Scholar 

  60. M. Ebrahimi, M. Maddah-Ali, A. Khandani, Throughput scaling laws for wireless networks with fading channels. IEEE Trans. Inf. Theory 53(11), 4250–4254 (2007)

    MathSciNet  Google Scholar 

  61. R. Gowaikar, B. Hochwald, B. Hassibi, Communication over a wireless network with random connections. IEEE Trans. Inf. Theory 52(7), 2857–2871 (2006)

    MathSciNet  Google Scholar 

  62. S. Cui, A. Haimovich, O. Somekh, H. Poor, S. Shamai, Throughput scaling of wireless networks with random connections. IEEE Trans. Inf. Theory 56(8), 3793–3806 (2010)

    MathSciNet  Google Scholar 

  63. R. Gowaikar, B. Hassibi, Achievable throughput in two-scale wireless networks. IEEE J. Sel. Areas Commun. 27(7), 1169–1179 (2009)

    Google Scholar 

  64. R. Jaber, J. Andrews, A lower bound on the capacity of wireless erasure networks. IEEE Trans. Inf. Theory 57(10), 6502–6513 (2011)

    MathSciNet  Google Scholar 

  65. C. Hu, X. Wang, Z. Yang, J. Zhang, Y. Xu, X. Gao, A geometry study on the capacity of wireless networks via percolation. IEEE Trans. Commun. 58(10), 2916–2925 (2010)

    Google Scholar 

  66. P. Li, M. Pan, Y. Fang, Capacity bounds of three-dimensional wireless ad hoc networks. IEEE/ACM Trans. Netw. 20(4), 1304–1315 (2012)

    Google Scholar 

  67. A. Keshavarz-Haddad, V. Ribeiro, R. Riedi, Broadcast capacity in multihop wireless networks, in Proceedings of ACM MobiCom, Los Angeles, 2006

    Google Scholar 

  68. R. Zheng, Asymptotic bounds of information dissemination in power-constrained wireless networks. IEEE Trans. Wirel. Commun. 7(1), 251–259 (2008)

    Google Scholar 

  69. X. Li, J. Zhao, Y. Wu, S. Tang, X. Xu, X. Mao, Broadcast capacity for wireless ad hoc networks, in Proceedings of IEEE MASS, Atlanta, Sept 2008

    Google Scholar 

  70. S. Li, Y. Liu, X. Li, Capacity of large scale wireless networks under gaussian channel model, in Proceedings of ACM MobiCom, San Francisco, 2008

    Google Scholar 

  71. X. Li, Multicast capacity of wireless ad hoc networks. IEEE/ACM Trans. Netw. 17(3), 950–961 (2009)

    Google Scholar 

  72. C. Wang, X. Li, C. Jiang, S. Tang, Y. Liu, J. Zhao, Scaling laws on multicast capacity of large scale wireless networks, in Proceedings of IEEE INFOCOM, Rio de Janeiro, Apr 2009

    Google Scholar 

  73. S. Shakkottai, X. Liu, R. Srikant, The multicast capacity of large multihop wireless networks. IEEE/ACM Trans. Netw. 18(6), 1691–1700 (2010)

    Google Scholar 

  74. U. Niesen, P. Gupta, D. Shah, The balanced unicast and multicast capacity regions of large wireless networks. IEEE Trans. Inf. Theory 56(5), 2249–2271 (2010)

    MathSciNet  Google Scholar 

  75. X. Wang, W. Huang, S. Wang, J. Zhang, C. Hu, Delay and capacity tradeoff analysis for motioncast. IEEE/ACM Trans. Netw. 19(5), 1354–1367 (2011)

    Google Scholar 

  76. X. Wang, L. Fu, C. Hu, Multicast performance with hierarchical cooperation. IEEE/ACM Trans. Netw. 20(3), 917–930 (2012)

    Google Scholar 

  77. D. Nie, A survey on multicast capacity of wireless ad hoc networks (2009). [Online]. Available: http://iwct.sjtu.edu.cn/personal/xwang8/research/nieding/survey.pdf

  78. Z. Wang, H. Sadjadpour, J. Garcia-Luna-Aceves, A unifying perspective on the capacity of wireless ad hoc networks, in Proceedings of IEEE INFOCOM, Phoenix, Apr 2008

    Google Scholar 

  79. G. Sharma, R. Mazumdar, N. Shroff, Delay and capacity trade-offs in mobile ad hoc networks: a global perspective. IEEE/ACM Trans. Netw. 15(5), 981–992 (2007)

    Google Scholar 

  80. D. Ciullo, V. Martina, M. Garetto, E. Leonardi, Impact of correlated mobility on delay-throughput performance in mobile ad-hoc networks, in Proceedings of IEEE INFOCOM, San Diego, Mar 2010

    Google Scholar 

  81. S. Ross, Introduction to Probability Models (Academic, Academic Press, Burlington, MA, USA 2009)

    Google Scholar 

  82. K. Lee, Y. Kim, S. Chong, I. Rhee, Y. Yi, Delay-capacity tradeoffs for mobile networks with Lévy walks and Lévy flights, in Proceedings of IEEE INFOCOM, San Diego, Mar 2010

    Google Scholar 

  83. I. Rhee, M. Shin, S. Hong, K. Lee, S. Kim, S. Chong, On the Levy-walk nature of human mobility. IEEE/ACM Trans. Netw. 19(3), 630–643 (2011)

    Google Scholar 

  84. M. Neely, E. Modiano, Capacity and delay tradeoffs for ad hoc mobile networks. IEEE Trans. Inf. Theory 51(6), 1917–1937 (2005)

    MathSciNet  Google Scholar 

  85. L. Ying, S. Yang, R. Srikant, Optimal delay–throughput tradeoffs in mobile ad hoc networks. IEEE Trans. Inf. Theory 54(9), 4119–4143 (2008)

    MathSciNet  Google Scholar 

  86. X. Lin, N. Shroff, The fundamental capacity-delay tradeoff in large mobile ad hoc networks, in Proceedings of 3rd Annual Mediterranean Ad Hoc Networking Workshop, Bodrum, June 2004

    Google Scholar 

  87. A. El Gamal, J. Mammen, B. Prabhakar, D. Shah, Optimal throughput-delay scaling in wireless networks-part I: the fluid model. IEEE Trans. Inf. Theory 52(6), 2568–2592 (2006)

    Google Scholar 

  88. X. Lin, G. Sharma, R. Mazumdar, N. Shroff, Degenerate delay-capacity tradeoffs in ad-hoc networks with brownian mobility. IEEE Trans. Inf. Theory 52(6), 2777–2784 (2006)

    MathSciNet  Google Scholar 

  89. G. Sharma, R. Mazumdar, Scaling laws for capacity and delay in wireless ad hoc networks with random mobility, in Proceedings of IEEE ICC, Paris, June 2004

    Google Scholar 

  90. P. Li, Y. Fang, J. Li, Throughput, delay, and mobility in wireless ad hoc networks, in Proceedings of IEEE INFOCOM, San Diego, Mar 2010

    Google Scholar 

  91. M. Garetto, P. Giaccone, E. Leonardi, On the capacity of ad hoc wireless networks under general node mobility, in Proceedings of IEEE INFOCOM, Anchorage, May 2007

    Google Scholar 

  92. M. Garetto, P. Giaccone, E. Leonardi, Capacity scaling of sparse mobile ad hoc networks, in Proceedings of IEEE INFOCOM, Phoenix, Apr 2008

    Google Scholar 

  93. M. Garetto, P. Giaccone, E. Leonardi, Capacity scaling in ad hoc networks with heterogeneous mobile nodes: the super-critical regime. IEEE/ACM Trans. Netw. 17(5), 1522–1535 (2009)

    Google Scholar 

  94. M. Garetto, P. Giaccone, E. Leonardi, Capacity scaling in ad hoc networks with heterogeneous mobile nodes: the subcritical regime. IEEE/ACM Trans. Netw. 17(6), 1888–1901 (2009)

    Google Scholar 

  95. M. Garetto, E. Leonardi, Restricted mobility improves delay-throughput tradeoffs in mobile ad hoc networks. IEEE Trans. Inf. Theory 56(10), 5016–5029 (2010)

    MathSciNet  Google Scholar 

  96. A. Ozgur, O. Lévêque, Throughput-delay tradeoff for hierarchical cooperation in ad hoc wireless networks. IEEE Trans. Inf. Theory 56(3), 1369–1377 (2010)

    Google Scholar 

  97. C. Comaniciu, H. Poor, On the capacity of mobile ad hoc networks with delay constraints. IEEE Trans. Wirel. Commun. 5(8), 2061–2071 (2006)

    Google Scholar 

  98. B. Liu, Z. Liu, D. Towsley, On the capacity of hybrid wireless networks, in Proceedings of IEEE INFOCOM, San Francisco, Mar 2003

    Google Scholar 

  99. U. Kozat, L. Tassiulas, Throughput capacity of random ad hoc networks with infrastructure support, in Proceedings of ACM MobiCom, San Diego, 2003, pp. 55–65

    Google Scholar 

  100. S. Toumpis, Capacity bounds for three classes of wireless networks: asymmetric, cluster, and hybrid, in Proceedings of ACM MobiHoc, Tokyo, 2004, pp. 133–144

    Google Scholar 

  101. A. Zemlianov, G. De Veciana, Capacity of ad hoc wireless networks with infrastructure support. IEEE J. Sel. Areas Commun. 23(3), 657–667 (2005)

    Google Scholar 

  102. B. Liu, P. Thiran, D. Towsley, Capacity of a wireless ad hoc network with infrastructure, in Proceedings of the 8th ACM International Symposium on mobile Ad Hoc Networking and Computing, Montréal (ACM, 2007), pp. 239–246

    Google Scholar 

  103. P. Li, Y. Fang, Impacts of topology and traffic pattern on capacity of hybrid wireless networks. IEEE Trans. Mobile Comput. 8(12), 1585–1595 (2009)

    Google Scholar 

  104. D. Shila, Y. Cheng, T. Anjali, Throughput and delay analysis of hybrid wireless networks with multi-hop uplinks, in Proceedings of IEEE INFOCOM, Shanghai, Apr 2011

    Google Scholar 

  105. P. Li, C. Zhang, Y. Fang, Capacity and delay of hybrid wireless broadband access networks. IEEE J. Sel. Areas Commun. 27(2), 117–125 (2009)

    Google Scholar 

  106. G. Zhang, Y. Xu, X. Wang, M. Guizani, Capacity of hybrid wireless networks with directional antenna and delay constraint. IEEE Trans. Commun. 58(7), 2097–2106 (2010)

    Google Scholar 

  107. W. Shin, S. Jeon, N. Devroye, M. Vu, S. Chung, Y. Lee, V. Tarokh, Improved capacity scaling in wireless networks with infrastructure. IEEE Trans. Inf. Theory 57(8), 5088–5102 (2011)

    MathSciNet  Google Scholar 

  108. W. Huang, X. Wang, Q. Zhang, Capacity scaling in mobile wireless ad hoc network with infrastructure support, in Proceedings of IEEE ICDCS, Genoa, June 2010

    Google Scholar 

  109. P. Li, Y. Fang, The capacity of heterogeneous wireless networks, in Proceedings of IEEE INFOCOM, San Diego, Mar 2010

    Google Scholar 

  110. P. Zhou, X. Wang, R. Rao, Asymptotic capacity of infrastructure wireless mesh networks. IEEE Trans. Mobile Comput. 7(8), 1011–1024 (2008)

    Google Scholar 

  111. L. Law, K. Pelechrinis, S. Krishnamurthy, M. Faloutsos, Downlink capacity of hybrid cellular ad hoc networks. IEEE/ACM Trans. Netw. 18(1), 243–256 (2010)

    Google Scholar 

  112. P. Li, X. Huang, Y. Fang, Capacity scaling of multihop cellular networks, in Proceedings of IEEE INFOCOM, Shanghai, Apr 2011

    Google Scholar 

  113. N. Zhang, N. Lu, R. Lu, J.W. Mark, X. Shen, Energy-efficient and trust-aware cooperation in cognitive radio networks, in Proceedings of IEEE ICC, Ottawa, June 2012

    Google Scholar 

  114. M. Vu, V. Tarokh, Scaling laws of single-hop cognitive networks. IEEE Trans. Wirel. Commun. 8(8), 4089–4097 (2009)

    Google Scholar 

  115. S. Jeon, N. Devroye, M. Vu, S. Chung, V. Tarokh, Cognitive networks achieve throughput scaling of a homogeneous network. IEEE Trans. Inf. Theory 57(8), 5103–5115 (2011)

    MathSciNet  Google Scholar 

  116. C. Yin, L. Gao, S. Cui, Scaling laws for overlaid wireless networks: a cognitive radio network versus a primary network. IEEE/ACM Trans. Netw. 18(4), 1317–1329 (2010)

    Google Scholar 

  117. W. Huang, X. Wang, Capacity scaling of general cognitive networks. IEEE/ACM Trans. Netw. to appear

    Google Scholar 

  118. Y. Li, X. Wang, X. Tian, X. Liu, Scaling laws for cognitive radio network with heterogeneous mobile secondary users, in Proceedings of IEEE INFOCOM, Orlando, Mar 2012

    Google Scholar 

  119. N. Sarafijanovic-Djukic, M. Pidrkowski, M. Grossglauser, Island hopping: efficient mobility-assisted forwarding in partitioned networks, in Proceedings of IEEE SECON, Reston, Sept 2006

    Google Scholar 

  120. S. Kostof, R. Tobias, The City Shaped (Thames and Hudson, London, 1991)

    Google Scholar 

  121. A. Siksna, The effects of block size and form in North American and Australian city centres. Urban Morphol. 1, 19–33 (1997)

    Google Scholar 

  122. M. Neely, E. Modiano, C. Rohrs, Dynamic power allocation and routing for time-varying wireless networks. IEEE J. Sel. Areas Commun. 23(1), 89–103 (2005)

    Google Scholar 

  123. R. Urgaonkar, M. Neely, Network capacity region and minimum energy function for a delay-tolerant mobile ad hoc network. IEEE/ACM Trans. Netw. 19(4), 1137–1150 (2011)

    Google Scholar 

  124. D. Slaughter, Difference Equations to Differential Equations (University Press of Florida, Gainesville, FL, USA 2009)

    Google Scholar 

  125. R. Motwani, P. Raghavan, Randomized Algorithms (Chapman & Hall/CRC, Cambridge University Press, Cambridge, UK 1995)

    MATH  Google Scholar 

  126. V. Vapnik, A. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16, 264 (1971)

    MATH  Google Scholar 

  127. V. Vapnik, Statistical Learning Theory (Wiley-Interscience, New York, 1998)

    MATH  Google Scholar 

  128. N. Banerjee, M. Corner, D. Towsley, B. Levine, Relays, base stations, and meshes: enhancing mobile networks with infrastructure, in Proceedings of ACM MobiCom, San Francisco, 2008

    Google Scholar 

  129. J. Eriksson, H. Balakrishnan, S. Madden, Cabernet: vehicular content delivery using WiFi, in Proceedings of ACM MobiCom, San Francisco, 2008

    Google Scholar 

  130. F. Malandrino, C. Casetti, C.-F. Chiasserini, M. Fiore, Content downloading in vehicular networks: what really matters, in Proceedings of IEEE INFOCOM, Shanghai, Apr 2011

    Google Scholar 

  131. C. Stefanović, D. Vukobratović, F. Chiti, L. Niccolai, V. Crnojević, R. Fantacci, Urban infrastructure-to-vehicle traffic data dissemination using uep rateless codes. IEEE J. Sel. Areas Commun. 29(1), 94–102 (2011)

    Google Scholar 

  132. I.W.-H. Ho, K.K. Leung, J.W. Polak, Stochastic model and connectivity dynamics for vanets in signalized road systems. IEEE/ACM Trans. Netw. 19(1), 195–208 (2011)

    Google Scholar 

  133. H. Xia, A simplified analytical model for predicting path loss in urban and suburban environments. IEEE Trans. Veh. Technol. 46(4), 1040–1046 (1997)

    Google Scholar 

  134. J. Lee, R. Mazumdar, N. Shroff, Joint resource allocation and base-station assignment for the downlink in CDMA networks. IEEE/ACM Trans. Netw. 14(1), 1–14 (2006)

    Google Scholar 

  135. F. Baccelli, B. Blaszczyszyn, Stochastic Geometry and Wireless Networks Volume I: Theory. Foundations and Trends in Networking (NOW, Now Publishers, Hanover 2010)

    Google Scholar 

  136. F. Baccelli, B. Blaszczyszyn, Stochastic Geometry and Wireless Networks Volume II: Applications. Foundations and Trends in Networking (NOW, Now Publishers, Hanover 2010)

    Google Scholar 

  137. M. Haenggi, R. Ganti, Interference in Large Wireless Networks (Now Publishers, Hanover, 2009)

    Google Scholar 

  138. K. Johansson, Cost effective deployment strategies for heterogeneous wireless networks. Ph.D. Dissertation, Kommunikationsteknik, Kungliga Tekniska högskolan, 2007

    Google Scholar 

  139. C. Wang, C. Jiang, X. Li, S. Tang, P. Yang, General capacity scaling of wireless networks, in Proceedings of IEEE INFOCOM, Shanghai, Apr 2011

    Google Scholar 

  140. C. Jiang, Y. Shi, Y. Hou, W. Lou, S. Kompella, S. Midkiff, Toward simple criteria to establish capacity scaling laws for wireless networks, in Proceedings IEEE INFOCOM, 2012, Orlando (IEEE, 2012), pp. 774–782

    Google Scholar 

  141. S. Weber, X. Yang, J. Andrews, G. De Veciana, Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Trans. Inf. Theory 51(12), 4091–4102 (2005)

    Google Scholar 

  142. A. Hunter, J. Andrews, S. Weber, Transmission capacity of ad hoc networks with spatial diversity. IEEE Trans. Wirel. Commun. 7(12), 5058–5071 (2008)

    Google Scholar 

  143. S. Weber, J. Andrews, N. Jindal, An overview of the transmission capacity of wireless networks. IEEE Trans. Commun. 58(12), 3593–3604 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Lu, N., Shen, X.(. (2014). Downlink Capacity of Vehicular Networks with Access Infrastructure. In: Capacity Analysis of Vehicular Communication Networks. SpringerBriefs in Electrical and Computer Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8397-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8397-7_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8396-0

  • Online ISBN: 978-1-4614-8397-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics