Skip to main content

Connection Between Microscopic and Macroscopic Models

  • Chapter
  • First Online:
Modeling, Simulation and Visual Analysis of Crowds

Part of the book series: The International Series in Video Computing ((VICO,volume 11))

Abstract

This chapter is devoted to the detailed study of the relation between a microscopic cellular automation and a macroscopic partial differential equation model for the movement of pedestrians. We describe the mathematical tools allowing to derive the macroscopic from the microscopic model. Such a connection between discrete, particle based and continuous, density based models can help to improve the understanding of basic properties of human crowds. We exemplify this by applying our results to typical cases. The first one is the formation of lanes in bi-directional flow. The second is the analysis of the fundamental diagram. Our analysis provides (at least qualitatively) a connection between these phenomena and model parameters. We conclude by pointing out a number of possible directions of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, S., Shah, M.: Floor fields for tracking in high density crowd scenes. In: ECCV (2), pp. 1–14 (2008)

    MathSciNet  Google Scholar 

  2. Aw, A., Rascle, M.: Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math. 60(3), 916–938 (electronic) (2000)

    Google Scholar 

  3. Bedeaux, D., Lakatos-Lindenberg, K., Shuler, K.E.: On the relation between master equations and random walks and their solutions. J. Math. Phys. 12(10), 2116–2123 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burger, M., Di Francesco, M., Pietschmann, J.-F., Schlake, B.: Nonlinear cross-diffusion with size exclusion. SIAM J. Math. Anal. 42(6), 2842–2871 (2010)

    Google Scholar 

  5. Burger, M., Schlake, B., Wolfram, M.-T. Nonlinear Poisson-Nernst Planck equations for ion flux through confined geometries (2010, preprint)

    Google Scholar 

  6. Burger, M., Markowich, P., Pietschmann, J.-F.: Continuous limit of a crowd motion and herding model: analysis and numerical simulations. Kinet. Relat. Models 4, 1025–1047 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A Stat. Mech. Appl. 295(3–4), 507–525 (2001)

    Article  MATH  Google Scholar 

  8. Chattaraj, U., Seyfried, A., Chakroborty, P.: Comparison of pedestrian fundamental diagram across cultures. Adv. Complex Syst. 12(03), 393–405 (2009)

    Article  Google Scholar 

  9. Chopard, B., Droz, M.: Cellular automata model for the diffusion equation. J. Stat. Phys. 64, 859–892 (1991)

    Article  MathSciNet  Google Scholar 

  10. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge/New York (2005)

    Google Scholar 

  11. Colombo, R.M., Rosini, M.D.: Pedestrian flows and non-classical shocks. Math. Methods Appl. Sci. 28(13), 1553–1567 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fukui, M., Ishibashi, Y.: Self-organized phase transitions in CA-models for pedestrians. J. Phys. Soc. Jpn. 8, 2861–2863 (1999)

    Article  Google Scholar 

  13. Giacomin, G., Lebowitz, J.L.: Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits. J. Stat. Phys. 87(1–2), 37–61 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73(4), 1067–1141 (2001)

    Article  Google Scholar 

  15. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)

    Article  Google Scholar 

  16. Helbing, D., Farkas, I., Vicsek, T.: Freezing by heating in a driven mesoscopic system. Phys. Rev. Lett. 84, 1240–1243 (2000)

    Article  Google Scholar 

  17. Helbing, D., Farkas, I.J., Molnar, P., Vicsek, T.: Simulation of pedestrian crowds in normal and evacuation situations. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 21–58. Springer, Berlin (2002)

    Google Scholar 

  18. Henderson, L.F.: The statistics of crowd fluids. Nature 229, 381–383 (1971)

    Article  Google Scholar 

  19. Hoskin, K.J., Spearpoint, M.: Crowd characteristics and egress at stadia. In: Shields, T.J. (ed.) Human Behaviour in Fire. Intersience, London (2004)

    Google Scholar 

  20. Kirchner, A.: Modellierung und statistische Physik biologischer und sozialer Systeme. PhD thesis (in german) (2002)

    Google Scholar 

  21. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Phys. A Stat. Mech. Appl. 312(1–2), 260–276 (2002)

    Article  MATH  Google Scholar 

  22. Lachapelle, A., Wolfram, M.-T.: On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transp. Res. B Methodol. 45, 1572–1589 (2011)

    Article  Google Scholar 

  23. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Leal-Taixé, L., Pons-Moll, G., Rosenhahn, B.: Everybody needs somebody: modeling social and grouping behavior on a linear programming multiple people tracker. In: IEEE International Conference on Computer Vision Workshops (ICCVW). 1st Workshop on Modeling, Simulation and Visual Analysis of Large Crowds (2011)

    Google Scholar 

  25. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  26. Maury, B., Roudneff-Chupin, A., Santambrogio, F.: A macroscopic crowd motion model of the gradient-flow type. M3AS 20(10), 1787–1821 (2010)

    Google Scholar 

  27. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: CVPR, pp. 935–942 (2009)

    Google Scholar 

  28. Muramatsu, M., Nagatani, T.: Jamming transition in two-dimensional pedestrian traffic. Physica A 275, 281–291 (2000)

    Article  Google Scholar 

  29. Painter, K.: Continuous models for cell migration in tissues andapplications to cell sorting via differential chemotaxis. Bull. Math. Biol. 71, 1117–1147 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pellegrini, S., Ess, A., Schindler, K., van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: International Conference on Computer Vision (2009)

    Google Scholar 

  31. Piccoli, B., Tosin, A.: Pedestrian flows in bounded domains with obstacles. Contin. Mech. Thermodyn. 21(2), 85–107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. In: Fukui, M., Sugiyama, Y., Schreckenberg, M., Wolf, D. (eds.) Traffic and Granular Flow ’01, pp. 1160–1168. Springer, Berlin/Heidelberg/Nagoya (2002)

    Google Scholar 

  33. Schadschneider, A., Klingsch, W., Kluepfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: empirical results, modeling and applications. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science, vol. 3, p. 3142. Springer, New York/London (2009)

    Google Scholar 

  34. Seyfried, A., Schadschneider, A.: Fundamental diagram and validation of crowd models. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) Cellular Automata. Volume 5191 of Lecture Notes in Computer Science, pp. 563–566. Springer, Berlin/Heidelberg (2008)

    Google Scholar 

  35. Seyfried, A., Steffen, B., Klingsch, W., Lippert, T., Boltes, M.: The fundamental diagram of pedestrian movement revisited – empirical results and modelling. In: Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E. (eds.) Traffic and Granular Flow’05, pp. 305–314. Springer, Berlin/Heidelberg (2007)

    Chapter  Google Scholar 

  36. Simpson, M., Landman, K., Hughes, B.: Diffusing populations: ghosts or folks? Australas. J. Eng. Educ. 15, 59–67 (2009)

    Google Scholar 

  37. Treuille, A., Cooper, S., Popovic, Z.: Continuum crowds. ACM Trans. Graph. 25, 1160–1168 (2006). Proceedings of SCM SIGGRAPH 2006

    Google Scholar 

  38. Weidmann, U.: Transporttechnik der Fussgänger - Transporttechnische Eigenschaften des Fussgängerverkehrs (Literaturstudie). Literature Research 90, Institut füer Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau IVT an der ETH Zürich, March 1993. in German

    Google Scholar 

  39. Yamaguchi, K., Berg, A., Ortiz, L., Berg, T.: Who are you with and where are you going? In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 1345–1352, June 2011

    Google Scholar 

  40. Yuhaski, S.J., Jr., Smith, J.M.: Modeling circulation systems in buildings using state dependent queueing models. Queueing Syst. Theory Appl. 4(4), 319–338 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram. J. Stat. Mech. Theory Exp. 2012(02), P02002 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges helpful discussions with M. Burger and B. Schlake (both WWU Münster) as well as A. Seyfried (Jülich/Wuppertal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Frederik Pietschmann .

Editor information

Editors and Affiliations

Appendix

Appendix

The linear stability approach described in Sect. 3.5 yields the following linear system for the perturbations

$$\displaystyle\begin{array}{rcl} \partial _{t}\xi & =& P((1 - {b}^{eq})\partial _{ yy}\xi - {r}^{eq}\partial _{ yy}\eta ) + Pk_{S}\partial _{x}((1 {-\rho }^{eq})\xi - {r}^{eq}(\xi -\eta )) \\ & & +Pk_{D}{r}^{eq}(1 {-\rho }^{eq})(\partial _{ xx} + \partial _{yy})\varPsi _{r}, {}\end{array}$$
(3.27)
$$\displaystyle\begin{array}{rcl} \partial _{t}\eta & =& P((1 - {r}^{eq})\partial _{ yy}\eta - {b}^{eq}\partial _{ yy}\xi ) - Pk_{S}\partial _{x}((1 {-\rho }^{eq})\eta - {b}^{eq}(-\xi +\eta )) \\ & & +Pk_{D}{b}^{eq}(1 {-\rho }^{eq})(\partial _{ xx} + \partial _{yy})\varPsi _{b}, {}\end{array}$$
(3.28)
$$\displaystyle\begin{array}{rcl} 0& =& \kappa \partial _{xx}\varPsi _{r} -\delta \varPsi _{r} + (1 {-\rho }^{eq} - {r}^{eq})\xi + {r}^{eq}\eta,{}\end{array}$$
(3.29)
$$\displaystyle\begin{array}{rcl} 0& =& \kappa \partial _{xx}\varPsi _{b} -\delta \varPsi _{b} + (1 {-\rho }^{eq} - {b}^{eq})\eta + {b}^{eq}\xi.{}\end{array}$$
(3.30)

We denote length of the domain in y-direction by l, the length in x-direction is denoted by L, see Fig. 3.3. The perturbations are assumed as

$$\displaystyle\begin{array}{rcl} \xi = U(x)\cos \left (\frac{k\pi } {l} y\right )\exp (\lambda t),& &{}\end{array}$$
(3.31)
$$\displaystyle\begin{array}{rcl} \eta = V (x)\cos \left (\frac{k\pi } {l} y\right )\exp (\lambda t),& &{}\end{array}$$
(3.32)
$$\displaystyle\begin{array}{rcl} \varPsi _{r} = Y _{r}(x)\cos \left (\frac{k\pi } {l} y\right )\exp (\lambda t),& &{}\end{array}$$
(3.33)
$$\displaystyle\begin{array}{rcl} \varPsi _{b} = Y _{b}(x)\cos \left (\frac{k\pi } {l} y\right )\exp (\lambda t).& &{}\end{array}$$
(3.34)

where U(x), V (x), Y r (x) and Y b (x) denote perturbations in the x-direction, and k denotes the mode of the perturbation in y-direction. From now on, we assume \({r}^{eq} = {b}^{eq}\). Inserting this ansatz into Eqs. (3.27) and (3.28) we obtain

$$\displaystyle\begin{array}{rcl} \lambda /PU& =& -(1 - {r}^{eq})\gamma U + {r}^{eq}\gamma V + k_{ S}(1 - 3{r}^{eq})U^{\prime} + k_{ S}{r}^{eq}V ^{\prime} \\ & & -k_{D}{r}^{eq}(1 - 2{r}^{eq})(\gamma +\varGamma )Y _{ r} {}\end{array}$$
(3.35)
$$\displaystyle\begin{array}{rcl} \lambda /PV & =& -(1 - {r}^{eq})\gamma V + {r}^{eq}\gamma U - k_{ S}(1 - 3{r}^{eq})V ^{\prime} - k_{ S}{r}^{eq}U^{\prime} \\ & & -k_{D}{r}^{eq}(1 - 2{r}^{eq})(\gamma +\varGamma )Y _{ b}, {}\end{array}$$
(3.36)

where we used \(\gamma = \frac{{k{}^{2}\pi }^{2}} {{l}^{2}}\), ′ denotes the derivative with respect to x, \(\varGamma = \frac{{\pi }^{2}} {{L}^{2}}\) and we assume perturbations Y i of a sinusoidal or cosinusoidal type \(Y _{i}^{\prime\prime} = -\varGamma Y _{i}\). The equations for U and V finally read, using (3.29) and (3.30):

$$\displaystyle\begin{array}{rcl} & [\lambda /P& +(1 - {r}^{eq})\gamma ]U - {r}^{eq}\gamma V + k_{ D}{r}^{eq}(1 - 2{r}^{eq})\frac{\gamma +\varGamma } {\kappa \varGamma +\delta }\left [(1 - 3{r}^{eq})U + {r}^{eq}V \right ] \\ & = & k_{S}(1 - 3{r}^{eq})U^{\prime} +\mu {r}^{eq}V ^{\prime}, {}\end{array}$$
(3.37)
$$\displaystyle\begin{array}{rcl} & [\lambda /P& +(1 - {r}^{eq})\gamma ]V - {r}^{eq}\gamma U + k_{ D}{r}^{eq}(1 - 2{r}^{eq})\frac{\gamma +\varGamma } {\kappa \varGamma +\delta }\left [(1 - 3{r}^{eq})V + {r}^{eq}U\right ] \\ & = & -k_{S}(1 - 3{r}^{eq})V ^{\prime} -\mu {r}^{eq}U^{\prime}. {}\end{array}$$
(3.38)

We denote \(\varTheta = \frac{\gamma +\varGamma } {\kappa \varGamma +\delta }\). The summation of (3.37) and (3.38) is given by

$$\displaystyle\begin{array}{rcl} [\lambda /P& +(1 - 2{r}^{eq})\gamma + k_{D}{r}^{eq}{(1 - 2{r}^{eq})}^{2}\varTheta ](U + V )& = k_{S}(1 - 4{r}^{eq})(U^{\prime} - V ^{\prime}).{}\end{array}$$
(3.39)

The derivatives of (3.37) and (3.38) are given by

$$\displaystyle\begin{array}{rcl} [\lambda /P& & +(1 - {r}^{eq})\gamma ]U^{\prime} - {r}^{eq}\gamma V ^{\prime} + k_{ D}{r}^{eq}(1 - 2{r}^{eq})\varTheta \left [(1 - 3{r}^{eq})U^{\prime} + {r}^{eq}V ^{\prime}\right ] \\ & =\,\,& k_{S}(1 - 3{r}^{eq})U^{\prime\prime} +\mu {r}^{eq}V ^{\prime\prime}, {}\end{array}$$
(3.40)
$$\displaystyle\begin{array}{rcl} [\lambda /P& & +(1 - {r}^{eq})\gamma ]V ^{\prime} - {r}^{eq}\gamma U^{\prime} + k_{ D}{r}^{eq}(1 - 2{r}^{eq})\varTheta \left [(1 - 3{r}^{eq})V ^{\prime} + {r}^{eq}U^{\prime}\right ] \\ & =& -k_{S}(1 - 3{r}^{eq})V ^{\prime\prime} -\mu {r}^{eq}U^{\prime\prime}. {}\end{array}$$
(3.41)

Subtracting these equation yields

$$\displaystyle\begin{array}{rcl} [\lambda /P& & +\gamma + k_{D}{r}^{eq}(1 - 2{r}^{eq})(1 - 4{r}^{eq})\varTheta ](U^{\prime} - V ^{\prime}) \\ & =& k_{S}(1 - 2{r}^{eq})(U^{\prime\prime} + V ^{\prime\prime}). {}\end{array}$$
(3.42)

Combining (3.39) and (3.42) leads to

$$\displaystyle\begin{array}{rcl} [& & \lambda /P + (1 - 2{r}^{eq})\gamma + k_{ D}{r}^{eq}{(1 - 2{r}^{eq})}^{2}\varTheta ](U + V ) = \\ & & k_{S}^{2} \frac{(1 - 4{r}^{eq})(1 - 2{r}^{eq})} {\lambda /P +\gamma +k_{D}{r}^{eq}(1 - 2{r}^{eq})(1 - 4{r}^{eq})\varTheta }(U^{\prime\prime} + V ^{\prime\prime}).{}\end{array}$$
(3.43)

In the following, we assume perturbations U and V in x-direction of a sinusoidal type, due to the homogeneous boundary conditions. This leads to

$$\displaystyle{ U^{\prime\prime} = -\frac{{m{}^{2}\pi }^{2}} {{L}^{2}} U,\qquad V ^{\prime\prime} = -\frac{{m{}^{2}\pi }^{2}} {{L}^{2}} V, }$$

where L denotes the length of the domain in x direction. In the following, we take m = 1, as we are only interested in lanes forming along the x-direction. We finally arrive at

$$\displaystyle\begin{array}{rcl} 0 = [& & {\lambda }^{2}/{P}^{2} + 2\lambda /P[\gamma (1 - {r}^{eq}) + k_{ D}{r}^{eq}(1 - 2{r}^{eq})(1 - 3{r}^{eq})\varTheta ] \\ & & {+\gamma }^{2}(1 - 2{r}^{eq}) + 2\gamma k_{ D}{r}^{eq}{(1 - 2{r}^{eq})}^{3}\varTheta \\ & & +k_{D}^{2}{({r}^{eq})}^{2}{(1 - 2{r}^{eq})}^{3}{(1 - 4{r}^{eq})\varTheta }^{2} \\ & & +k_{S}^{2}\varGamma (1 - 4{r}^{eq})(1 - 2{r}^{eq})](U + V ). {}\end{array}$$
(3.44)

Accordingly, the equation for λ is given by

$$\displaystyle\begin{array}{rcl} \lambda _{1/2}& =& -P[(1 - {r}^{eq})\gamma + k_{ D}{r}^{eq}(1 - 2{r}^{eq})(1 - 3{r}^{eq})\varTheta ] \\ & & \pm P\sqrt{{({r}^{eq } )}^{2 } {[\gamma -k_{D } {r}^{eq } (1 - 2{r}^{eq } )\varTheta ]}^{2 } - k_{S }^{2 }\varGamma (1 - 4{r}^{eq } )(1 - 2{r}^{eq } )}.{}\end{array}$$
(3.45)

The parameter λ is supposed to be real-valued for all k, particularly for k = 1. From that we conclude

$$\displaystyle\begin{array}{rcl}{ ({r}^{eq})}^{2}{[\gamma -k_{ D}{r}^{eq}(1 - 2{r}^{eq})\varTheta ]}^{2} \geq k_{ S}^{2}\varGamma (1 - 4{r}^{eq})(1 - 2{r}^{eq}).& &{}\end{array}$$
(3.46)

As r eq ≤ 1∕2, (3.46) is always fulfilled in case that r eq ≥ 1∕4. This means that instabilities arise only in case r eq ≥ 1∕4. To obtain instabilities increasing in time, λ > 0 has to be satisfied. This means

$$\displaystyle\begin{array}{rcl} & & {[(1 - {r}^{eq})\gamma + k_{ D}{r}^{eq}(1 - 2{r}^{eq})(1 - 3{r}^{eq})\varTheta ]}^{2} \\ & & \quad < {({r}^{eq}){}^{2}\gamma }^{2} - 2\gamma k_{ D}{({r}^{eq})}^{3}(1 - 2{r}^{eq})\varTheta \\ & & \quad + k_{D}^{2}{({r}^{eq})}^{4}{(1 - 2{r}^{eq}){}^{2}\varTheta }^{2} - k_{ S}^{2}\varGamma (1 - 4{r}^{eq})(1 - 2{r}^{eq}){}\end{array}$$
(3.47)

Assuming (1 − 2r eq) > 0, which means that the overall density is below maximum, we obtain

$$\displaystyle\begin{array}{rcl} & & {\gamma }^{2} + 2\gamma k_{ D}{r}^{eq}{(1 - 2{r}^{eq})}^{2}\varTheta \\ & & \quad + k_{D}^{2}{({r}^{eq})}^{2}{(1 - 2{r}^{eq})}^{2}{(1 - 4{r}^{eq})\varTheta }^{2} + k_{ S}^{2}\varGamma (1 - 4{r}^{eq}) < 0.{}\end{array}$$
(3.48)

The mode of the cosinusoidal perturbation in y-direction is given by k, hence it gives the number of lanes of particles moving in opposite direction which are amplified during time. If k = 1, we obtain one lane in each direction. Accordingly, we obtain as inequality for \(\gamma = \frac{{k{}^{2}\pi }^{2}} {{l}^{2}}\)

$$\displaystyle\begin{array}{rcl} & & {\gamma }^{2}\left [1 + 2k_{ D}{r}^{eq}{(1 - 2{r}^{eq})}^{2} \frac{1} {\kappa \varGamma +\delta }\right. \\ & & \quad \left.+k_{D}^{2}{{r}^{eq}}^{2}{(1 - 2{r}^{eq})}^{2}(1 - 4{r}^{eq}) \frac{1} {{(\kappa \varGamma +\delta )}^{2}}\right ] \\ & & \quad +\gamma \left [2k_{D}{r}^{eq}{(1 - 2{r}^{eq})}^{2} \frac{\varGamma } {\kappa \varGamma +\delta }\right. \\ & & \quad \left.+2k_{D}^{2}{{r}^{eq}}^{2}{(1 - 2{r}^{eq})}^{2}(1 - 4{r}^{eq}) \frac{\varGamma } {{(\kappa \varGamma +\delta )}^{2}}\right ] \\ & & \quad + k_{D}^{2}{{r}^{eq}}^{2}{(1 - 2{r}^{eq})}^{2}(1 - 4{r}^{eq}) \frac{{\varGamma }^{2}} {{(\kappa \varGamma +\delta )}^{2}} + k_{S}^{2}\varGamma (1 - 4{r}^{eq}) \\ & & < 0. {}\end{array}$$
(3.49)

The evaluation of (3.49) leads to a condition on k which determines under which conditions instabilities, which lead to lane formation, appear.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pietschmann, JF. (2013). Connection Between Microscopic and Macroscopic Models. In: Ali, S., Nishino, K., Manocha, D., Shah, M. (eds) Modeling, Simulation and Visual Analysis of Crowds. The International Series in Video Computing, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8483-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8483-7_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8482-0

  • Online ISBN: 978-1-4614-8483-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics