Skip to main content

Abstract

The care of bleeding trauma patients with associated orthopedic injuries remains challenging. The combination of shock and tissue injury in these severely injured patients results in multiple proinflammatory factors being released and/or produced. Unfortunately, these responses to severe injury lead to excessive inflammation resulting in worse outcomes, including multiple organ failure and death. As our understandings of post-injury physiological responses evolve, we are finding that there are multiple intersections between both the inflammatory and coagulation pathways, which explain the close and frequent association of shock with coagulopathy. However, the current evaluation and diagnosis of coagulopathies, as determined by plasma-based laboratory tests, have been limited in identifying both hypocoagulable and hypercoagulable states in post-injury trauma patients. Consequently, viscoelastic hemostatic assays are now the standard of care in identifying post-injury coagulopathies and have further elucidated links between inflammation and coagulation. Moreover, viscoelastic hemostatic assays may also prove to be the optimal devices to guide component resuscitation. Extensive research in resuscitation and the use of rapid point-of-care assays are necessary to further understand the complex pathophysiological responses to shock, especially in the trauma setting. Earlier, and appropriate, interventions, which minimize inflammation and decrease coagulopathies, may ultimately reduce transfusions and improve outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Temkin O. Galenism: rise and decline of a medical philosophy. Ithaca: Cornell University Press; 1973.

    Google Scholar 

  2. O’Malley CD. Andreas Vesalius of Brussels, 1514–1564. Berkeley: University of California Press; 1964.

    Google Scholar 

  3. Power D. William Harvey. London: T. Fisher Unwin; 1897.

    Google Scholar 

  4. Hales S. Statistical essays: containing Haemastaticks: or an account of some hydraulic and hydrostatical experiments made on the blood and blood vessels of animals. 2nd ed. London: Innys and Others; 1740. p. 5.

    Google Scholar 

  5. Le Dran HF. A treatise, or reflections drawn from practice on gunshot wounds (translated). London: Clarke; 1743.

    Google Scholar 

  6. Gross S. A system of surgery: pathologic, diagnostic, therapeutic and operative. Philadelphia: Lea and Febiger; 1872.

    Google Scholar 

  7. Bernard C. Lecons sur les phenomenes de la cummuns aux animauxet aux vegetaux. Paris: JB Ballierve; 1879. p. 4.

    Google Scholar 

  8. Cannon W. Traumatic shock. New York: D. Appleton and Co; 1923.

    Google Scholar 

  9. Blalock A. Principles of surgical care, shock and other problems. St. Louis: CV Mosby; 1940.

    Google Scholar 

  10. Wigers HC, Ingraham RC. Hemorrhagic shock: definition and criteria for its diagnosis. J Clin Invest. 1946;25(1):30–6.

    Google Scholar 

  11. Eltzschig HK, Collard CD. Vascular ischaemia and reperfusion injury. Br Med Bull. 2004;70:71–86.

    PubMed  CAS  Google Scholar 

  12. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–35.

    PubMed  CAS  Google Scholar 

  13. Ogawa S, Koga S, Kuwabara K, Brett J, Morrow B, Morris SA, Bilezikian JP, Silverstein SC, Stern D. Hypoxia-induced increased permeability of endothelial monolayers occurs through lowering of cellular camp levels. Am J Physiol. 1992;262(3 Pt 1):C546–54.

    PubMed  CAS  Google Scholar 

  14. Hotchkiss RS, Strasser A, McDunn JE, Swanson PD. Cell death. N Engl J Med. 2009;361(16):1570–83.

    PubMed  CAS  Google Scholar 

  15. Eltzschig HK, Eckle T. Ischemia and reperfusion—from mechanism to translation. Nat Med. 2011;17(11):1391–401.

    PubMed  CAS  Google Scholar 

  16. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296(5566):301–5.

    PubMed  CAS  Google Scholar 

  17. Nathan C. Points of control in inflammation. Nature. 2002;420(6917):846–52.

    PubMed  CAS  Google Scholar 

  18. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000;190:255–66.

    PubMed  CAS  Google Scholar 

  19. Stahel PH, Smith WR, Moore EE. Role of biological modifiers regulating the immune response after trauma. Injury. 2007;38(12):1409–22.

    PubMed  Google Scholar 

  20. Kapur MM, Jain P, Gidh M. The effect of trauma on serum C3 activation and its correlation with injury severity score in man. J Trauma. 1986;26(5):464–6.

    PubMed  CAS  Google Scholar 

  21. Kapur MM, Jain P, Gidh M. Estimation of serum complement and its role in management of trauma. World J Surg. 1988;12(2):211–6.

    PubMed  CAS  Google Scholar 

  22. Younger JG, Sasaki N, Waite MD, Murray HN, Saleh EF, Ravage ZB, Hirshl RB, Ward PA, Till GO. Detrimental effects of complement activation in hemorrhagic shock. J Appl Physiol. 2001;90(2):441–6.

    PubMed  CAS  Google Scholar 

  23. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97.

    PubMed  CAS  Google Scholar 

  24. Ioannou A, Dalle Lucca J, Tsokos GC. Immunopathogenesis of ischemia/reperfusion-associated tissue damage. Clin Immunol. 2011;141(1):3–14.

    PubMed  CAS  Google Scholar 

  25. Neher MD, Weckbach S, Flierl MA, Huber-Lang MS, Stahel PF. Molecular mechanisms of inflammation and tissue injury after major trauma—is complement the “bad guy”? J Biomed Sci. 2011;18:90.

    PubMed  CAS  Google Scholar 

  26. Haas PJ, van Strijp J. Anaphylatoxins: their role in bacterial infection and inflammation. Immunol Res. 2007;37(3):161–75.

    PubMed  CAS  Google Scholar 

  27. Ward PA. The dark side of C5a in sepsis. Nat Rev Immunol. 2004;4(2):133–42.

    PubMed  CAS  Google Scholar 

  28. Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol. 2005;23:821–52.

    PubMed  CAS  Google Scholar 

  29. Spitzer D, Mitchell LM, Atkinson JP, Hourcade DE. Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. J Immunol. 2007;179(4):2600–8.

    PubMed  CAS  Google Scholar 

  30. Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, Lambris JD, Warner RL, Flierl MA, Hoesel LM, Gebhard F, Younger JG, Drouin SM, Wetsel RA, Ward PA. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med. 2006;12(6):682–7.

    PubMed  CAS  Google Scholar 

  31. Amara U, Flierl MA, Rittirsch D, Klos A, Chen H, Acker B, Bruckner UB, Nilsson UB, Gebhard F, Lambris JD, Huber-Lang M. Molecular intercommunication between the complement and coagulation system. J Immunol. 2010;185(9):5628–36.

    PubMed  CAS  Google Scholar 

  32. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC, Beck PL, Muruve DA, Kubes P. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science. 2010;330(6002):362–6.

    PubMed  CAS  Google Scholar 

  33. Moraes TJ, Zurawska JH, Downey GP. Neutrophil granule contents in the pathogenesis of lung injury. Curr Opin Hematol. 2006;13(1):21–7.

    PubMed  CAS  Google Scholar 

  34. Buczek-Thomas JA, Lucey EC, Stone PJ, Chu CL, Rich CB, Carreras I, Goldstein RH, Foster JA, Nugent MA. Elastase mediates the release of growth factors from lung in vivo. Am J Respir Cell Mol Biol. 2004;31(3):344–50.

    PubMed  CAS  Google Scholar 

  35. Chen HC, Lin HC, Liu CY, Wang CH, Hwang T, Huang TT, Lin CH, Kuo HP. Neutrophil elastase induces IL-8 synthesis by lung epithelial cells via the mitogen-activated protein kinase pathway. J Biomed Sci. 2004;11:49–58.

    PubMed  Google Scholar 

  36. Steinberg J, Halter J, Schiller HJ, Dasilva M, Landas S, Gatto LA, Maisi P, Sorsa T, Rajamaki M, Lee HM, Nieman GF. Metalloproteinases inhibition reduces lung injury and improves survival after cecal ligation and puncture in rats. J Surg Res. 2003;111(2):185–95.

    PubMed  CAS  Google Scholar 

  37. Plitas G, Gagne PJ, Muhs BE, Ianus IA, Shaw JP, Beudjekian M, Delgado Y, Jacobowitz G, Rockman C, Shamamian P. Experimental hindlimb ischemia increases neutrophil-mediated matrix metalloproteinase activity: a potential mechanism for lung injury after limb ischemia. J Am Coll Surg. 2003;196(5):761–7.

    PubMed  Google Scholar 

  38. Owen CA, Hu Z, Lopez-Otin C, Shapiro SD. Membrane-bound matrix metalloproteinase-8 on activated polymorphonuclear cells is a potent, tissue inhibitor of metalloproteinase-resistant collagenase and serpinase. J Immunol. 2004;172(12):7791–803.

    PubMed  CAS  Google Scholar 

  39. Soehnlein O, Kai-Larsen Y, Frithiof R, Sorensen OE, Kenne E, Scharffetter-Kochanek K, Eriksson EE, Herwald H, Agerberth B, Lindbom L. Neutrophil primary granule proteins HBP and HNP1–3 boost bacterial phagocytosis by human and murine macrophages. J Clin Invest. 2008;118(10):3491–502.

    PubMed  CAS  Google Scholar 

  40. Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77(5):598–625.

    PubMed  CAS  Google Scholar 

  41. Usatyuk PV, Nataajan V. Regulation of reactive oxygen species-induced endothelial cell-cell and cell-matrix contacts by focal adhesion kinase and adherens junction proteins. Am J Physiol Lung Cell Mol Physiol. 2005;289(6):L999–1010.

    PubMed  CAS  Google Scholar 

  42. Scheel-Toellner D, Wang K, Assi LK, Webb PR, Braddock RM, Salmon M, Lord JM. Clustering of death receptors in lipid rafts initiates neutrophil spontaneous apoptosis. Biochem Soc Trans. 2004;32(Pt 5):679–81.

    PubMed  CAS  Google Scholar 

  43. Moore EE, Moore FA, Harken AH, Johnson JL, Ciesla D, Banerjee A. The two-event construct of postinjury multiple organ failure. Shock. 2005;24 Suppl 1:71–4.

    PubMed  Google Scholar 

  44. Rhoades RA, Bell DR, editors. Medical physiology: principles for clinical medicine. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  45. Irwin RS, Rippe JM, editors. Intensive care medicine. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2011.

    Google Scholar 

  46. Holcomb JB. Damage control resuscitation. J Trauma. 2007;62(6 Suppl):S36–7.

    PubMed  Google Scholar 

  47. Cotton BA, Reddy N, Hatch QM, LeFebvre E, Wade CE, Kozar RA, Gill BS, Albarado R, McNutt MK, Holcomb JB. Damage control resuscitation is associated with a reduction in resuscitation volume and improvement in survival in 390 damage control laparotomy patients. Ann Surg. 2011;254(4):598–605.

    PubMed  Google Scholar 

  48. Brenner M, Stein DM, Hu PF, Aarabi B, Sheth K, Scalea TM. Traditional systolic blood pressure targets underestimate hypotension-induced secondary brain injury. J Trauma Acute Care Surg. 2012;72(5):1135–9.

    PubMed  Google Scholar 

  49. Bratton SL, Chestnut GM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma. 2007;24:S59–64.

    PubMed  Google Scholar 

  50. Robertson CS, Baladka AB, Hannay HJ, Contant CF, Gopinath SP, Cormio M, Uzura M, Grossman RG. Prevention of secondary ischemic insults after severe head injury. Crit Care Med. 1999;27(10):2086–95.

    PubMed  CAS  Google Scholar 

  51. Human albumin administration in critically ill patients: systematic review of randomized controlled trials. Cochrane Injuries Group Albumin Reviewers. BMJ. 1998;317(7153):235–40.

    Google Scholar 

  52. Roberts I, Blackhall K, Alderson P, Bunn F, Schierhout G. Human albumin solution for resuscitation and volume expansion in critically ill patients. Cochrane Database Syst Rev. 2011;(11):CD001208.

    Google Scholar 

  53. Lissauer ME, Chi A, Kramer ME, Scalea TM, Johnson SB. Association of 6% hetastarch resuscitation with adverse outcomes in critically ill trauma patients. Am J Surg. 2011;202(1):53–8.

    PubMed  CAS  Google Scholar 

  54. Avorn J, Patel M, Levin R, Winkelmayer WC. Hetastarch and bleeding complications after coronary artery surgery. Chest. 2003;124(4):1437–42.

    PubMed  Google Scholar 

  55. Bulger EM, May S, Kerby JD, Emeron S, Stiell IG, Schreiber MA, Brasel KJ, Tisherman SA, Coimbra R, Rizoli S, Minei JP, Hata JS, Sopko G, Evans DC, Hoyt DB. Out-of-hospital hypertonic resuscitation after traumatic hypovolemic shock: a randomized, placebo controlled trial. Ann Surg. 2011;253(3):431–41.

    PubMed  Google Scholar 

  56. Mann DV, Robinson MK, Rounds JD, DeRosa E, Niles DA, Ingwall JS, Wilmore DW, Jacobs DO. Superiority of blood over saline resuscitation from hemorrhagic shock: a 31P magnetic resonance spectroscopy study. Ann Surg. 1997;226(5):653–61.

    PubMed  CAS  Google Scholar 

  57. Scalea TM, Maltz S, Yelon J, Trooskin SZ, Duncan AO, Sclafani SJ. Resuscitation of multiple trauma and head injury: role of crystalloid fluids and inotropes. Crit Care Med. 1994;22(10):1610–5.

    PubMed  CAS  Google Scholar 

  58. Abou-Khalil B, Scalea TM, Trooskin SZ, Henry SM, Hitchcock R. Hemodynamic responses to shock in young trauma patients; need for invasive monitoring. Crit Care Med. 1994;22(4):633–9.

    PubMed  CAS  Google Scholar 

  59. Shoemaker WC, Montgomery ES, Kaplan E, Elwyn DH. Physiologic patterns in surviving and nonsurviving shock patients; use of sequential cardiorespiratory variables in defining criteria for therapeutic goals and early warning of death. Arch Surg. 1973;106(5):630–6.

    PubMed  CAS  Google Scholar 

  60. Shoemaker WC, Appel P, Bland R. Use of physiologic monitoring to predict outcome and to assist in clinical decisions in critically ill postoperative patients. Am J Surg. 1983;146(1):43–8.

    PubMed  CAS  Google Scholar 

  61. Fleming A, Bishop M, Shoemaker W, Appel P, Sufficool W, Kuvhenguwha A, Kennedy F, Wo CJ. Prospective trial of supranormal values as goals of resuscitation in severe trauma. Arch Surg. 1992;127(10):1175–81.

    PubMed  CAS  Google Scholar 

  62. Bishop MH, Shoemaker WC, Appel PL, Meade P, Ordog GJ, Wasserberger J, Wo CJ, Rimle DA, Kram HB, Umali R, Kennedy F, Shuleshko J, Stephen CM, Shori SK, Thadepalli HD. Prospective, randomized trial of survivor values of cardiac index, oxygen delivery, and oxygen consumption as resuscitation endpoints in severe trauma. J Trauma. 1995;38(5):780–7.

    PubMed  CAS  Google Scholar 

  63. Moore FA, Haenel JB, Moore EE, Whitehill TA. Incommensurate oxygen consumption in response to maximal oxygen availability predicts postinjury multisystem organ failure. J Trauma. 1992;33(1):58–67.

    PubMed  CAS  Google Scholar 

  64. Durham RM, Neunaber K, Mazuski JE, Shapiro MJ, Baue AE. The use of oxygen consumption and delivery as endpoints for resuscitation in critically ill patients. J Trauma. 1996;41(1):32–40.

    PubMed  CAS  Google Scholar 

  65. Velmahos GC, Demetriades D, Shoemaker WC, Chan LS, Tatevossian R, Wo CC, Vassiliu P, Cornwell 3rd EE, Murray JA, Roth B, Belzberg H, Asensio JA, Berne TV. Endpoints of resuscitation of critically injured patients: normal or supranormal? A prospective randomized trial. Ann Surg. 2000;232(3):409–18.

    PubMed  CAS  Google Scholar 

  66. McKinley BA, Kozar RA, Cocanour CS, Baldivia A, Sailors RM, Ware DN, Moore FA. Normal versus supranormal oxygen delivery goals in shock resuscitation: the response is the same. J Trauma. 2002;53(5):825–32.

    PubMed  Google Scholar 

  67. Balogh Z, McKinley BA, Cocanour CS, Kozar RA, Valdivia A, Sailors RM, Moore FA. Supranormal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg. 2003;138(6):637–42.

    PubMed  Google Scholar 

  68. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Fumagalli R. A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med. 1995;333(16):1025–32.

    PubMed  CAS  Google Scholar 

  69. Sauaia A, Moore FA, Moore EE, Haenel JB, Read RA, Lezotte DC. Early predictors of postinjury multiple organ failure. Arch Surg. 1994;129(1):39–45.

    PubMed  CAS  Google Scholar 

  70. Kincaid EH, Miller PR, Meredith JW, Rahman N, Chang MC. Elevated arterial base deficit in trauma patients: a marker of impaired oxygen utilization. J Am Coll Surg. 1998;187(4):384–92.

    PubMed  CAS  Google Scholar 

  71. Rixen D, Raum M, Bouillon B, Lefering R, Neugebauer E. Base deficit development and its prognostic significance in posttrauma critical illness: an analysis by the trauma registry of the Deutsche Gesellschaft Fur unfallchirurgi. Shock. 2001;15(2):83–9.

    PubMed  CAS  Google Scholar 

  72. Vincent J-L, Dufaye P, Berre J, Leeman M, Degaute J-P, Kahn RJ. Serial lactate determinations during circulatory shock. Crit Care Med. 1983;11:449–51.

    PubMed  CAS  Google Scholar 

  73. Doglio GR, Pusajo JF, Egurrola MA, Bonfigili GC, Parra C, Vetere L, Hernandez MS, Fernandez S, Palizas F, Guiterrez G. Gastric mucosal pH as a prognostic index of mortality in critically ill patients. Crit Care Med. 1991;19(8):1037–40.

    PubMed  CAS  Google Scholar 

  74. Maynard N, Bihari D, Beale R, Smithies M, Baldock G, Mason R, McColl I. Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA. 1993;270(10):1203–10.

    PubMed  CAS  Google Scholar 

  75. Chang MC, Meredith JW. Cardiac preload, splanchnic perfusion, and their relationship during resuscitation in trauma patients. J Trauma. 1997;42(4):577–82.

    PubMed  CAS  Google Scholar 

  76. Soller BR, Cingo N, Puyana JC, Khan T, His C, Kim H, Favreau J, Heard SO. Simultaneous measurement of hepatic tissue pH, venous oxygen saturation and hemoglobin by near infrared spectroscopy. Shock. 2001;15(2):106–11.

    PubMed  CAS  Google Scholar 

  77. Soller BR, Heard SO, Cingo NA, His C, Favreau J, Khan T, Ross RR, Puyana JC. Application of fiberoptic sensors for the study of hepatic dysoxia in swine hemorrhagic shock. Crit Care Med. 2001;29(7):1438–44.

    PubMed  CAS  Google Scholar 

  78. Sims C, Seigne P, Menconi M, Monarca J, Barlow C, Pettit J, Puyana JC. Skeletal muscle acidosis correlates with the severity of blood volume loss during shock and resuscitation. J Trauma. 2001;51(6):1137–46.

    PubMed  CAS  Google Scholar 

  79. Beekley AC, Martin MJ, Nelson T, Grathwohl KW, Griffith M, Beilman G, Holcomb JB. Continuous noninvasive tissue oximetry in the early evaluation of the combat casualty: a prospective study. J Trauma. 2010;69 Suppl 1:S14–25.

    PubMed  Google Scholar 

  80. Roumen RM, Redl H, Schlag G, Zilow G, Sandtner W, Koller W, Hendriks T, Goris RJ. Inflammatory mediators in relation to the development of multiple organ failure in patients after severe blunt trauma. Crit Care Med. 1995;23(3):474–80.

    PubMed  CAS  Google Scholar 

  81. Lenz A, Franklin GA, Cheadle WG. Systemic inflammation after trauma. Injury. 2007;38(12):1336–45.

    PubMed  Google Scholar 

  82. Gebhard F, Pfetsch H, Steinbach G, Strecker W, Kinzl L, Bruckner UB. Is interleukin 6 an early marker of injury severity following major trauma in humans? Arch Surg. 2000;135(3):291–5.

    PubMed  CAS  Google Scholar 

  83. Harris HE, Raucci A. Alarmin(g) news about danger: workshop on innate danger signals and HMGB1. EMBO Rep. 2006;7(8):774–8.

    PubMed  CAS  Google Scholar 

  84. Oppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol. 2005;17(4):359–65.

    PubMed  CAS  Google Scholar 

  85. Manson J, Thiemermann C, Brohi K. Trauma alarmins as activators of damage-induced inflammation. Br J Surg. 2012;99 Suppl 1:12–20.

    PubMed  CAS  Google Scholar 

  86. Cohen MJ, Brohi K, Calfee CS, Rahn P, Chesebro BB, Christiaans SC, Carles M, Howard M, Pittet JF. Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit Care. 2009;13(6):R174.

    PubMed  Google Scholar 

  87. Pespeni M, Mackersie RC, Lee H, Morabito D, Hodnett M, Howard M, Pittet JF. Serum levels of Hsp60 correlate with the development of acute lung injury after trauma. J Surg Res. 2005;126(1):41–7.

    PubMed  CAS  Google Scholar 

  88. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–7.

    PubMed  CAS  Google Scholar 

  89. Leclerc E, Fritz G, Vetter SW, Heizmann CW. Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta. 2009;1793(6):993–1007.

    PubMed  CAS  Google Scholar 

  90. Hayakata T, Shiozaki T, Tasaki O, Ikegawa H, Inoue Y, Toshiyuki F, Hosotubo H, Kieko F, Yamashita T, Tanaka H, Shimazu T, Sugimoto H. Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock. 2004;22(2):102–7.

    PubMed  CAS  Google Scholar 

  91. Vos PE, Jacobs B, Andriessen TM, Lamers KJ, Borm GF, Beems T, Edwards M, Rosmalen CF, Vissers JL. GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology. 2010;75(20):1786–93.

    PubMed  CAS  Google Scholar 

  92. Galichet A, Weibel M, Heizmann CW. Calcium-regulated intramembrane proteolysis of the RAGE receptor. Biochem Biophys Res Commun. 2008;370(1):1–5.

    PubMed  CAS  Google Scholar 

  93. Cohen MJ, Carles M, Brohi K, Calfee CS, Rahn P, Call MS, Chesebro BB, West MA, Pittet JF. Early release of soluble receptor for advanced glycation endproducts after severe trauma in humans. J Trauma. 2010;68(6):1273–8.

    PubMed  CAS  Google Scholar 

  94. Johnson GB, Brunn GJ, Platt JL. Cutting edge: an endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4. J Immunol. 2004;172(1):20–4.

    PubMed  CAS  Google Scholar 

  95. Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, et al. A genomic storm in critically injured humans. J Exp Med. 2011;208(13):2581–90.

    PubMed  CAS  Google Scholar 

  96. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001;345(8):588–95.

    PubMed  CAS  Google Scholar 

  97. Angus DC, Linde-Zwirble WT, Lidicker J. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–10.

    PubMed  CAS  Google Scholar 

  98. Dombrovskiy VY, Martin AA, Sunderram J. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993–2003. Crit Care Med. 2007;35:1414–5.

    Google Scholar 

  99. Fortin CF, McDonald PP, Fulop T, Lesur O. Sepsis, leukocytes, and nitric oxide (NO): an intricate affair. Shock. 2010;33(4):344–52.

    PubMed  CAS  Google Scholar 

  100. Castellanos-Ortega A, Suberviola B, Garcia-Astudillo LA, Holanda MS, Ortiz F, Llorca J, Delgado-Rodriquez M. Impact of the surviving sepsis campaign protocols on hospital length of stay and mortality in septic shock patients: results of a three-year follow-up quasi-experimental study. Crit Care Med. 2010;38(4):1036–43.

    PubMed  Google Scholar 

  101. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36(1):296–327.

    PubMed  Google Scholar 

  102. Furlan JC, Fehlings MG. Cardiovascular complications after acute spinal cord injury: pathophysiology, diagnosis, and management. Neurosurg Focus. 2008;25(5):E13.

    PubMed  Google Scholar 

  103. Garstang SV, Miller-Smith SA. Autonomic nervous system dysfunction after spinal cord injury. Phys Med Rehabil Clin N Am. 2007;18(2):275–96.

    PubMed  Google Scholar 

  104. Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine. 2001;26(24 Suppl):S2–12.

    PubMed  CAS  Google Scholar 

  105. Guly HR, Bouamra O, Lecky FE. The incidence of neurogenic shock in patients with isolated spinal cord injury in the emergency department. Resuscitation. 2008;76(1):57–62.

    PubMed  CAS  Google Scholar 

  106. Charkoudian N, Rabbitts JA. Sympathetic neural mechanisms in human cardiovascular health and disease. Mayo Clin Proc. 2009;84(9):822–30.

    PubMed  Google Scholar 

  107. Levi L, Wolf A, Belzberg H. Hemodynamic parameters in patients with acute cervical cord trauma: description, intervention, and prediction of outcome. Neurosurgery. 1993;33(6):1007–16.

    PubMed  CAS  Google Scholar 

  108. Hadley MN, Walters BC, Grabb PA, Oyesiku NM, Przybylski GJ, Resnick DK, Ryken TC, Mielke DH. Guidelines for the management of acute cervical spine and spinal cord injuries. Neurosurgery. 2002;49:407–98.

    Google Scholar 

  109. King BS, Gupta R, Narayan RK. The early assessment and intensive care unit management of patients with severe traumatic brain and spinal cord injuries. Surg Clin North Am. 2000;80(3):855–70, viii–ix.

    PubMed  CAS  Google Scholar 

  110. Stevens RD, Bhardwaj A, Kirsch JR, Mirski MA. Critical care and perioperative management in traumatic spinal cord injury. J Neurosurg Anesthesiol. 2003;15(3):215–29.

    PubMed  Google Scholar 

  111. Hollenberg SM, Kavinsky CJ, Parrillo JE. Cardiogenic shock. Ann Intern Med. 1999;131(1):47–59.

    PubMed  CAS  Google Scholar 

  112. Patel AK, Hollenberg SM. Cardiovascular failure and cardiogenic shock. Semin Respir Crit Care Med. 2011;32(5):598–606.

    PubMed  Google Scholar 

  113. Hollenberg SM. Cardiogenic shock. Crit Care Clin. 2001;17(2):391–410.

    PubMed  CAS  Google Scholar 

  114. Becker RC. Hemodynamic, mechanical, and metabolic determinants of thrombolytic efficacy: a theoretic framework for assessing the limitations of thrombolysis in patients with cardiogenic shock. Am Heart J. 1993;125(3):919–29.

    PubMed  CAS  Google Scholar 

  115. Leigh-Smith S, Harris T. Tension pneumothorax—time for a re-think? Emerg Med J. 2005;22(1):8–16.

    PubMed  CAS  Google Scholar 

  116. Bodson L, Bouferrache K, Vieillard-Baron A. Cardiac tamponade. Curr Opin Crit Care. 2011;17(5):416–24.

    PubMed  Google Scholar 

  117. Fowler NO, Holmes JC. Hemodynamic effects of isoproterenol and norepinephrine in acute cardiac tamponade. J Clin Invest. 1969;48(3):502–7.

    PubMed  CAS  Google Scholar 

  118. Yee ES, Verrier ED, Thomas AN. Management of air embolism in blunt and penetrating thoracic trauma. J Thorac Cardiovasc Surg. 1983;85(5):661–8.

    PubMed  CAS  Google Scholar 

  119. Trunkey D. Initial treatment of patients with extensive trauma. N Engl J Med. 1991;324(18):1259–63.

    PubMed  CAS  Google Scholar 

  120. Krug EG, Sharma GK, Lozana R. The global burden of injuries. Am J Public Health. 2000;90(4):523–6.

    PubMed  CAS  Google Scholar 

  121. Sauaia A, Moore FA, Moore EE, Moser KS, Brennan R, Read RA, Pons PT. Epidemiology of trauma deaths: a reassessment. J Trauma. 1995;38(2):185–93.

    PubMed  CAS  Google Scholar 

  122. Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54(6):1127–30.

    PubMed  Google Scholar 

  123. Macleod JBA, Lynn M, McKenney MG, Cohn SM, Murtha M. Early coagulopathy predicts mortality in trauma. J Trauma. 2003;55(1):39–44.

    PubMed  Google Scholar 

  124. Maegele M, Lefering R, Yucel N, Tjardes T, Rixen D, Paffrath T, Simanski C, Neugebauer E, Bouillon B. Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury. 2007;38(3):298–304.

    PubMed  Google Scholar 

  125. Stefanini M. Basic mechanisms of hemostasis. Bull N Y Acad Med. 1954;30(4):239–77.

    PubMed  CAS  Google Scholar 

  126. Kshuk JL, Moore EE, Millikan JS, Moore JB. Major abdominal vascular trauma—a unified approach. J Trauma. 1982;22(8):672–9.

    Google Scholar 

  127. Harrigan C, Lucas CE, Ledgerwood AM. The effect of hemorrhagic shock on the clotting cascade in injured patients. J Trauma. 1989;29(10):1416–21.

    PubMed  CAS  Google Scholar 

  128. Phillips TF, Soulier G, Wilson RF. Outcome of massive transfusion exceeding two blood volumes in trauma and emergency surgery. J Trauma. 1987;27(8):903–10.

    PubMed  CAS  Google Scholar 

  129. Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet JF. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245(5):812–8.

    PubMed  Google Scholar 

  130. Hoffman M, Monroe DM. A cell-based model of hemostasis. Thromb Haemost. 2001;85(6):958–65.

    PubMed  CAS  Google Scholar 

  131. Falati S, Gross P, Merrill-Skoloff G, Furie BC, Furie B. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med. 2002;8(10):1175–81.

    PubMed  CAS  Google Scholar 

  132. Lorand L. Factor XIII: structure, activation, and interactions with fibrinogen and fibrin. Ann N Y Acad Sci. 2001;936:291–311.

    PubMed  CAS  Google Scholar 

  133. Bajzar L, Manuel R, Nesheim ME. Purification and characterization of TAFI, a thrombin-activatable fibrinolysis inhibitor. J Biol Chem. 1995;270(24):14477–84.

    PubMed  CAS  Google Scholar 

  134. Ofosu FA. Protease activated receptors 1 and 4 govern the responses of human platelets to thrombin. Transfus Apher Sci. 2003;28(3):265–8.

    PubMed  Google Scholar 

  135. Cannon WB, Fraser J, Cowell E. The preventive treatment of wound shock. JAMA. 1918;70(9):618–21.

    Google Scholar 

  136. Kashuk JL, Moore EE, Sawyer M, Wohlauer M, Pezold M, Barnett C, Biffl WL, Burlew CC, Johnson JL, Sauaia A. Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma. Ann Surg. 2010;252(3):434–42.

    PubMed  Google Scholar 

  137. Cohen MJ, Call M, Nelson M, Calfee CS, Esmon CT, Brohi K, Pittet JF. Critical role of activated protein C in early coagulopathy and later organ failure, infection and death in trauma patients. Ann Surg. 2012;255(2):379–85.

    PubMed  Google Scholar 

  138. Gando S. Acute coagulopathy of trauma shock and coagulopathy of trauma: a rebuttal. You are now going down the wrong path. J Trauma. 2009;67(2):381–3.

    PubMed  Google Scholar 

  139. Hardaway RM. The significance of coagulative and thrombotic changes after haemorrhage and injury. J Clin Pathol Suppl (R Coll Pathol). 1970;4:110–20.

    CAS  Google Scholar 

  140. Gando S, Nakanishi Y, Tedo I. Cytokines and plasminogen activator inhibitor-I in posttrauma disseminated intravascular coagulation: relationship to multiple organ dysfunction syndrome. Crit Care Med. 1995;23(11):1835–42.

    PubMed  CAS  Google Scholar 

  141. Levi M. Disseminated intravascular coagulation. Crit Care Med. 2007;35(9):2191–5.

    PubMed  CAS  Google Scholar 

  142. Kooistra T, Schrauwen Y, Arts J, Emeis JJ. Regulation of endothelial cell t-PA synthesis and release. Int J Hematol. 1994;59(4):233–55.

    PubMed  CAS  Google Scholar 

  143. Wohlauer MV, Moore EE, Thomas S, Sauaia A, Evans E, Harr J, Silliman CC, Ploplis V, Castellino FJ, Walsh M. Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J Am Coll Surg. 2012;214(5):739–46.

    PubMed  Google Scholar 

  144. Davenport R, Curry N, Manson J, De’Ath H, Coates A, Rourke C, Pearse R, Stanworth S, Brohi K. Hemostatic effects of fresh frozen plasma may be maximal at red cell ratios of 1:2. J Trauma. 2011;70(1):90–5.

    PubMed  Google Scholar 

  145. Advanced trauma life support for doctors. 9th ed. Chicago: American College of Surgeons; 2012.

    Google Scholar 

  146. Kashuk JL, Moore EE, Johnson JL, Haenel J, Wilson M, Moore JB, Cothren CC, Biffl WL, Banerjee A, Sauaia A. Postinjury life threatening coagulopathy: is 1:1 fresh frozen plasma: packed red blood cells the answer? J Trauma. 2008;65(2):261–70.

    PubMed  Google Scholar 

  147. Borgman MA, Spinella PC, Perkins JG, Grathwohl KW, Repine T, Beekley AC, Sebesta J, Jenkins D, Wade CE, Holcomb JB. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63(4):805–13.

    PubMed  Google Scholar 

  148. Duchesne JC, Hunt JP, Wahl G, Marr AB, Wang YZ, Weintraub SE, Wright MJ, McSwain Jr NE. Review of current blood transfusions strategies in a mature level I trauma center: were we wrong for the last 60 years? J Trauma. 2008;65(2):272–8.

    PubMed  Google Scholar 

  149. Holcomb JB, Wade CE, Michalek JE, Chisholm GB, Zarzabal LA, Schreiber MA, Gonzalez EA, Pomper GJ, Perkins JG, Spinella PC, Williams KL, Park MS. Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg. 2008;248(3):447–58.

    PubMed  Google Scholar 

  150. Teixeira PG, Inaba K, Shulman I, Salim A, Demetriades D, Brown C, Browder T, Green D, Rhee P. Impact of plasma transfusion in massively transfused trauma patients. J Trauma. 2009;66(3):693–7.

    PubMed  Google Scholar 

  151. Spinella PC, Perkins JG, Grathwohl KW, Beekley AC, Niles SE, McLaughlin DF, Wade CE, Holcomb JB. Effect of plasma and red blood cell transfusions on survival in patients with combat related traumatic injuries. J Trauma. 2008;64(2 Suppl):S69–78.

    PubMed  Google Scholar 

  152. Bick RL, Kaplan H. Syndromes of thrombosis and hypercoagulability. Congenital and acquired causes of thrombosis. Med Clin North Am. 1998;82(3):409–58.

    PubMed  CAS  Google Scholar 

  153. Counts RB, Haisch C, Simon TL, Maxwell NG, Heimbach DM, Carrico CJ. Hemostasis in massively transfused trauma patients. Ann Surg. 1979;190(1):91–9.

    PubMed  CAS  Google Scholar 

  154. Lucas CE, Ledgerwood AM. Clinical significance of altered coagulation tests after massive transfusion for trauma. Am Surg. 1981;47(3):125–30.

    PubMed  CAS  Google Scholar 

  155. von Kaulla KN, Swan H. Clotting deviations in man associated with open-heart surgery during hypothermia. J Thorac Surg. 1958;36(6):857–68.

    Google Scholar 

  156. von Kaulla KN, Kaye H, von Kaulla E, Marchioro TL, Starzl TE. Changes in blood coagulation. Before and after hepatectomy or transplantation in dogs and man. Arch Surg. 1966;92(1):71–9.

    Google Scholar 

  157. Kheirabadi BS, Crissey JM, Deguzman R, Holcomb JB. In vivo bleeding time and in vitro thrombelastography measurements are better indicators of dilutional hypothermic coagulopathy than prothrombin time. J Trauma. 2007;62(6):1352–9.

    PubMed  Google Scholar 

  158. Park MS, Martini WZ, Dubick MA, Salinas J, Butenas S, Kheirabadi BS, Pusateri AE, Vos JA, Guymon CH, Wolf SE, Mann KG, Holcomb JB. Thromboelastography as a better indicator of hypercoagulable state after injury than prothrombin time or activated partial thromboplastin time. J Trauma. 2009;67(2):266–75.

    PubMed  Google Scholar 

  159. Plotkin AJ, Wade CE, Jenkins DH, Smith KA, Noe JC, Park MS, Perkins JG, Holcomb JB. A reduction in clot formation rate and strength assessed by thrombelastography is indicative of transfusion requirements in patients with penetrating injuries. J Trauma. 2008;64(2 Suppl):S64–8.

    PubMed  Google Scholar 

  160. Martini W, Cortez D, Dubick M, Park MS, Holcomb JB. Thrombelastography is better than PT, aPTT, and activated clotting time in detecting clinically relevant clotting abnormalities after hypothermia, hemorrhagic shock and resuscitation in pigs. J Trauma. 2008;65(3):535–43.

    PubMed  Google Scholar 

  161. Doran CM, Woolley T, Midwinter MJ. Feasibility of using rotational thromboelastometry to assess coagulation status of combat casualties in a deployed setting. J Trauma. 2010;69 Suppl 1:S40–8.

    PubMed  Google Scholar 

  162. Davenport R, Manson J, De’Ath H, Platton S, Coates A, Allard S, Hart D, Pearse R, Pasi KJ, Mac Callum P, Stanworth S, Brohi K. Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med. 2011;39(12):2652–8.

    PubMed  Google Scholar 

  163. Rahbar MH, Fox EE, Del Junco DJ, Cotton BA, Podbielski JM, Matijevic N, Cohen MJ, Schreiber MA, Zhang J, Mirhaji P, Duran SJ, Reynolds RJ, Benjamin-Garner R, Holcomb JB. Coordination and management of multicenter clinical studies in trauma: experience from the Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study. Resuscitation. 2012;83(4):459–64.

    PubMed  Google Scholar 

  164. Rourke C, Curry N, Khan S, Taylor R, Raza I, Davenport R, Stanworth S, Brohi K. Fibrinogen levels during trauma hemorrhage, response to replacement therapy and association with patient outcomes. J Thromb Haemost. 2012;10(7):1342–51.

    PubMed  CAS  Google Scholar 

  165. Johansson PI, Stensballe J. Hemostatic resuscitation for massive bleeding: the paradigm of plasma and platelets—a review of the current literature. Transfusion. 2010;50(3):701–10.

    PubMed  Google Scholar 

  166. Johansson PI, Stensballe J. Effect of haemostatic control resuscitation on mortality in massively bleeding patients: a before and after study. Vox Sang. 2009;96(2):111–8.

    PubMed  CAS  Google Scholar 

  167. Johansson PI. Goal-directed hemostatic resuscitation for massively bleeding patients: the Copenhagen concept. Transfus Apher Sci. 2010;43(3):401–5.

    PubMed  Google Scholar 

  168. Schochl H, Nienaber U, Hofer G, Voelckel W, Jambor C, Scharbert G, Kozek-Langenecker S, Solomon C. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care. 2010;14(2):R55.

    PubMed  Google Scholar 

  169. Chambers LA, Chow SJ, Shaffer LE. Frequency and characteristics of coagulopathy in trauma patients treated with a low- or high-plasma-content massive transfusion protocol. Am J Clin Pathol. 2011;136(3):364–70.

    PubMed  CAS  Google Scholar 

  170. Schochl H, Cotton B, Inaba K, Nienaber U, Fischer H, Voelckel W, Solomon C. FIBTEM provides early prediction of massive transfusion in trauma. Crit Care. 2011;15(6):R265.

    PubMed  Google Scholar 

  171. Stinger HK, Spinella PC, Perkins JG, Grathwohl KW, Salinas J, Martini WZ, Hess JR, Dubick MA, Simon CD, Beekley AC, Wolf SE, Wade CE, Holcomb JB. The ratio of fibrinogen to red cells transfused affects survival in casualties receiving massive transfusions at an army combat support hospital. J Trauma. 2008;64(2 Suppl):S79–85.

    PubMed  CAS  Google Scholar 

  172. Dunbar NM, Chandler WL. Thrombin generation in trauma patients. Transfusion. 2009;49(12):2652–60.

    PubMed  CAS  Google Scholar 

  173. Tauber H, Innerhofer P, Breitkopf R, Westermann I, Beer R, El Attal R, Strasak A, Mittermayr M. Prevalence and impact of abnormal ROTEM assays in severe blunt trauma: results of the ‘Diagnosis and Treatment of Trauma-Induced Coagulopathy (DIA-TRE-TIC) study’. Br J Anaesth. 2011;107(3):378–87.

    PubMed  CAS  Google Scholar 

  174. Schochl H, Nienaber U, Maegele M, Hochleitner G, Primavesi F, Steitz B, Arndt C, Hanke A, Voelckel W, Solomon C. Transfusion in trauma: thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit Care. 2011;15(2):R83.

    PubMed  Google Scholar 

  175. Holcomb JB, Zarzabal LA, Michalex JE, Kozar RA, Spinella PC, Perkins JG, Matijevic N, Dong JF, Pati S, Wade CE, Trauma Outcomes Group, et al. Increased platelet: RBC ratios are associated with improved survival after massive transfusion. J Trauma. 2011;71(2 Suppl 3):S318–28.

    PubMed  Google Scholar 

  176. Simmons JW, White CE, Eastridge BJ, Mace JE, Wade CE, Blackbourne LH. Impact of policy change on US Army combat transfusion practices. J Trauma. 2010;69 Suppl 1:S75–80.

    PubMed  Google Scholar 

  177. Dirks J, Jorgensen H, Jensen CH, Ostrowski SR, Johansson PI. Blood product ratio in acute traumatic coagulopathy—effect on mortality in a Scandinavian level 1 trauma centre. Scand J Trauma Resusc Emerg Med. 2010;18:65.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest E. Moore MD, FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harr, J.N., Pieracci, F.M., Moore, E.E. (2014). Shock and Coagulopathy. In: Smith, W., Stahel, P. (eds) Management of Musculoskeletal Injuries in the Trauma Patient. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8551-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8551-3_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8550-6

  • Online ISBN: 978-1-4614-8551-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics