Skip to main content

Pediatric Monitoring

  • Chapter
  • First Online:
Monitoring Technologies in Acute Care Environments

Abstract

The standards for routine monitoring are the same for both the pediatric and adult anesthesia patients. Due to extremes of age and body mass, the application of the anesthesia provider’s sense of sight, hearing, and touch is at least as important as the basic electronic monitors associated with anesthetic care. This chapter will focus upon the practical limitations of current monitoring systems, especially as concerns premature and newborn surgical patients, and will address methods to improve accuracy, mitigate variability, and discuss specific surgical situations that may warrant more advanced and/or invasive monitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Standards for basic anesthesia monitoring. Committee of origin: standards and practice parameters. (Approved by ASA House of Delegates on October 21, 1986 and last amended on October 20, 2010 with an effective date of July 1, 2011).

    Google Scholar 

  2. Coté CJ, Lerman J, Todres ID. The practice of pediatric anesthesia. In: Cote CJ, Lerman J, Todres ID, editors. A practice of anesthesia for infants and children. 4th ed. Philadelphia: Elsevier-Saunders; 2009.

    Google Scholar 

  3. Lintner RN, Holzman RS. Pediatric considerations. In: Sandberg WS, Urman RD, Ehrenfeld JM, editors. The MGH textbook of anesthetic equipment. 1st ed. Philadelphia: Elsevier-Saunders; 2011.

    Google Scholar 

  4. Prielipp RC, Kelly JS, Roy RC. Use of esophageal or precordial stethoscopes by anesthesia providers. Are we listening to our patients? J Clin Anesth. 1995;7:367–72.

    Article  PubMed  CAS  Google Scholar 

  5. Klepper ID, Webb RK, Vanderwalt JH. The stethoscope: applications and limitations-an analysis of 2000 incident reports. Anaesth Intensive Care. 1993;21:575–8.

    PubMed  CAS  Google Scholar 

  6. Webster T. Now that we have pulse oximeters and capnographs, we don’t need precordial and esophageal stethoscopes. J Clin Monit. 1987;3(3):191–2.

    Article  PubMed  CAS  Google Scholar 

  7. Caplan RA, Posner KL, Ward RJ, Cheney FW. Adverse respiratory events in anesthesia: a closed claims analysis. Anesthesiology. 1990;72(5):828–33.

    Article  PubMed  CAS  Google Scholar 

  8. Sum-Ping ST, Mehta MP, Anderton JM. A comparative study of methods of detection of esophageal intubation. Anesth Analg. 1989;69(5):627–32.

    Article  PubMed  CAS  Google Scholar 

  9. Birmingham PK, Cheney FW, Ward RJ. Esophageal intubation: a review of detection techniques. Anesth Analg. 1986;65(8):886–91.

    Article  PubMed  CAS  Google Scholar 

  10. Barthram CN, Taylor L. The esophageal and precordial stethoscope transducer as a monitoring and teaching aid. Anaesthesia. 1994;49:713–4.

    Article  PubMed  CAS  Google Scholar 

  11. Biro P. Electrically amplified precordial stethoscope. J Clin Monit. 1994;10:410–2.

    Article  PubMed  CAS  Google Scholar 

  12. Chakraborty A, Mathur S. Bilateral auscultation with a modified precordial stethoscope. Anaesth Intensive Care. 2007;35(2):300; +. Academic OneFile. Web. 9 Jun 2012.

    CAS  Google Scholar 

  13. Kato H, Suzuki A, Nakajima Y, Makino H, Sanjo Y, Nakai T, et al. A visual stethoscope to detect the position of the tracheal tube. Anesth Analg. 2009;109(6):1836–42.

    Article  PubMed  Google Scholar 

  14. Jimenez N, Posner KL, Cheney FW, Caplan RA, Lee LA, Domino KB, et al. An update on pediatric anesthesia liability: a closed claims analysis. Anesth Analg. 2007;104:147–53.

    Article  PubMed  Google Scholar 

  15. Morray JP, Geiduschek JM, Caplan RA, Posner KL, Gild WM, Cheney FW, et al. A comparison of pediatric and adult anesthesia closed malpractice claims. Anesthesiology. 1993;78:461–7.

    Article  PubMed  CAS  Google Scholar 

  16. Macrio A, Hackel A, Gregory GA, Forseth D. The demographics of inpatient pediatric anesthesia: implications for credentialing policy. J Clin Anesth. 1995;7:507–11.

    Article  Google Scholar 

  17. Bell G, Limb J. Equipment and monitoring for paediatric anesthesia. Anaesth Intensive Care Med. 2009;10:480–8.

    Article  Google Scholar 

  18. Coté CJ, Goldstein EA, Cote MA, Hoaglin DC, Ryan JF, et al. A single blind study of pulse oximetry in children. Anesthesiology. 1988;68:184–8.

    Article  PubMed  Google Scholar 

  19. Coté CJ, Rolf N, Liu LM, Goudsouzian NG, Ryan JF, Zaslavsky A, et al. A single blind study of combined pulse oximetry and capnography in children. Anesthesiology. 1991;74:980–7.

    Article  PubMed  Google Scholar 

  20. Severinghaus JW, Kelleher JF. Recent developments in pulse oximetry. Anesthesiology. 1992;86:1018–38.

    Google Scholar 

  21. Guan Z, Baker K, Sandberg WS. Misalignment of disposable pulse oximeter probes results in false saturation readings that influence anesthetic management. Anesth Analg. 2009;109(5):1530–3.

    Article  PubMed  Google Scholar 

  22. Coté CJ, Daniels AL, Connolly M, Szyfelbein SK, Wickens CD. Tongue oximetry in children with extensive thermal injury: comparison with peripheral oximetry. Can J Anaesth. 1992;39:454–7.

    Article  PubMed  Google Scholar 

  23. Gunter JB. A buccal sensor for measuring arterial oxygen saturation. Anesth Analg. 1989;69:417–8.

    Article  PubMed  CAS  Google Scholar 

  24. Reynolds LM, Nicolson SC, Steven JM, Escobar A, McGonigle ME, Jobes DR. Influence of sensor site location on pulse oximetry kinetics in children. Anesth Analg. 1993;76:751–4.

    PubMed  CAS  Google Scholar 

  25. Wouters K. Clinical usefulness of the simultaneous display of pulse oximetry from two probes. Paediatr Anaesth. 2008;18:345–6.

    Article  PubMed  Google Scholar 

  26. Veyckemans F, Baele P, Guillaume JE, Willems E, Robert A, Clerbaux T. Hyperbilirubinemia does not interfere with hemoglobin saturation measured by pulse oximetry. Anesthesiology. 1989;70:118–22.

    Article  PubMed  CAS  Google Scholar 

  27. Villanueva R, Bell C, Kain ZN, Colingo KA. Effect of peripheral perfusion on accuracy of pulse oximetry in children. J Clin Anesth. 1999;11:317–22.

    Article  PubMed  CAS  Google Scholar 

  28. Desebbe O, Cannesson M. Using ventilation-induced plethysmographic variations to optimize patient fluid status. Curr Opin Anaesthesiol. 2008;21:772–8.

    Article  PubMed  Google Scholar 

  29. Barker SJ, Badal JJ. The measurement of dyshemoglobins and total hemoglobin by pulse oximetry. Curr Opin Anaesthesiol. 2008;21:805–10.

    Article  PubMed  Google Scholar 

  30. Greer KJ, Bowen WA, Krauss AN. End-tidal CO2 as a function of tidal volume in mechanically ventilated infants. Am J Perinatol. 2003;20:447–51.

    Article  PubMed  Google Scholar 

  31. Hardman JG, Mahajan RP, Curran J. The influence of breathing system filters on paediatric capnography. Pediatr Anesth. 1999;9:35–8.

    Article  CAS  Google Scholar 

  32. Kugelman A, Zeiger-Aginsky D, Bader D, Shoris I, Riskin A. A novel method of distal end-tidal CO2 capnography in intubated infants: comparison with arterial CO2 and with proximal mainstream end-tidal CO2. Pediatrics. 2008;122:e1219–24.

    Article  PubMed  Google Scholar 

  33. Lopez E, Grabar S, Barbier A, Krauss B, Jarreau PH, Moriette G. Detection of carbon dioxide thresholds using low-flow sidestream capnography in ventilated preterm infants. Intensive Care Med. 2009;35:1942–9.

    Article  PubMed  Google Scholar 

  34. Mason KP, Burrows PE, Dorsey MM, Zurakowski D, Krauss B. Accuracy of capnography with a 30 foot nasal cannula for monitoring respiratory rate and end tidal CO2 in children. J Clin Monit. 2000;16:259–62.

    Article  CAS  Google Scholar 

  35. National High Blood Pressure Education Program Working Group on Hypertension Control in Children and Adolescents. Update on the 1987 task force report on high blood pressure in children and adolescents. Pediatrics. 1996;98:649–58.

    Google Scholar 

  36. Short JA. Noninvasive blood pressure measurement in the upper and lower limbs of anesthetized children. Paediatr Anaesth. 2000;10(6):591–3.

    PubMed  CAS  Google Scholar 

  37. Kunk R, McCain GC. Comparison of upper arm and calf oscillometric blood pressure measurement in preterm infants. J Perinatol. 1996;16(2 Pt 1):89–92.

    PubMed  CAS  Google Scholar 

  38. Crapanzano MS, Strong WB, Newman IR, Hixon RL, Casal D, Linder CW. Calf blood pressure: clinical implications and correlations with arm blood pressure in infants and young children. Pediatrics. 1996;97(2):220–4.

    PubMed  CAS  Google Scholar 

  39. Bissonette B, Sessler DI, LaFlamme P. Intraoperative temperature monitoring sites in infants and children and the effect of inspired gas warming on esophageal temperature. Anesth Analg. 1989;69:192–6.

    Google Scholar 

  40. Booker PD. Equipment and monitoring in paediatric anaesthesia. Br J Anaesth. 1999;83:78–90.

    Article  PubMed  CAS  Google Scholar 

  41. Butt WW, Whyte H. Blood pressure monitoring in neonates: comparison of umbilical and peripheral artery catheter measurements. J Pediatr. 1984;105:630–2.

    Article  PubMed  CAS  Google Scholar 

  42. O’Neill Jr JA, Neblett III WW, Born ML. Management of major thromboembolic complications of umbilical artery catheters. J Pediatr Surg. 1981;16:972–8.

    Article  PubMed  Google Scholar 

  43. Andropolous DB. Monitoring and vascular access. In: Gregory GA, Andropolous DB, editors. Gregory’s pediatric anesthesia. 5th ed. Hoboken: Wiley-Blackwell; 2012. p. 381–418.

    Google Scholar 

  44. Francke A, Wachsmuth H. How accurate is invasive blood pressure determination with fluid-filled pressure line systems? Anaesthesiol Reanim. 2000;25:46–54.

    PubMed  CAS  Google Scholar 

  45. Simon L, Teboul A, Gwinner N, Boulay G, Cerceau-Delaporte S, Hamza J. Central venous catheter placement in children: evaluation of electrocardiography using J-wire. Paediatr Anaesth. 1999;9:501–4.

    Article  PubMed  CAS  Google Scholar 

  46. Andropoulos DB, Bent ST, Skjonsby B, Stayer SA. The optimal length of insertion of central venous catheters for pediatric patients. Anesth Analg. 2001;93:883–6.

    Article  PubMed  CAS  Google Scholar 

  47. Fakler U, Pauli C, Balling G, Lorenz HP, Eicken A, Hennig M, et al. Cardiac index monitoring by pulse contour analysis and thermodilution after pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2007;133:224–8.

    Article  PubMed  CAS  Google Scholar 

  48. Sakka SG, Klein M, Reinhart K, Meier-Hellmann A. Prognostic value of extravascular lung water in critically ill patients. Chest. 2002;122:2080–6.

    Article  PubMed  Google Scholar 

  49. Kurth CD, Levy WJ, McCann J. Near-infrared spectroscopy cerebral oxygen saturation thresholds for hypoxia-ischemia in piglets. J Cereb Blood Flow Metab. 2002;22:335–41.

    Article  PubMed  CAS  Google Scholar 

  50. Hou X, Ding H, Teng Y, Zhou C, Tang X, Li S, Ding H. Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy. Physiol Meas. 2007;28:1251–65.

    Article  PubMed  Google Scholar 

  51. Dent CL, Spaeth JP, Jones BV, Schwartz SM, Glauser TA, Hallinan B, et al. Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg. 2006;131:190–7.

    Article  PubMed  Google Scholar 

  52. Hirsch JC, Charpie JR, Ohye RG, Gurney JG. Near infrared spectroscopy: what we know and what we need to know – a systematic review of the congenital heart disease literature. J Thorac Cardiovasc Surg. 2009;137:154–9.

    Article  PubMed  Google Scholar 

  53. Denman WT, Swanson EL, Rosow D, Ezbicki K, Connors PD, Rosow CE, et al. Pediatric evaluation of the bispectral index (BIS) monitor and correlation of BIS with end-tidal sevoflurane concentration in infants and children. Anesth Analg. 2000;90:872–7.

    Article  PubMed  CAS  Google Scholar 

  54. Ibrahim AE, Taraday JK, Kharasch ED. Bispectral index monitoring during sedation with sevoflurane, midazolam, and propofol. Anesthesiology. 2001;95:1151–9.

    Article  PubMed  CAS  Google Scholar 

  55. Woodcock B, Tremper K, Miller R. Hemodynamic emergencies. In: Atlas of anesthesia, vol. 4. New York: Current Medicine; 2002.

    Google Scholar 

  56. O’Gara P. Valvular heart disease. In: Essential atlas of cardiovascular disease, vol. 1. New York: Current Medicine; 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Romanelli MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Romanelli, T.M. (2014). Pediatric Monitoring. In: Ehrenfeld, J., Cannesson, M. (eds) Monitoring Technologies in Acute Care Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8557-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8557-5_41

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8556-8

  • Online ISBN: 978-1-4614-8557-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics