Skip to main content

Pulmonary Artery Catheterization

  • Chapter
  • First Online:
Monitoring Technologies in Acute Care Environments

Abstract

Pulmonary artery catheterization has been available as a clinical tool since 1964 and quickly became the gold standard for hemodynamic monitoring of critically ill patients. The pulmonary artery catheter allows simultaneous monitoring of continuously mixed venous O2 saturation (SvO2), cardiac output (CO), right atrial pressure (Pra), pulmonary arterial pressure (Ppa), right ventricular ejection fraction (RVef), and, by mathematical derivation, right ventricular end-diastolic volume (EDV) and, by intermittent distal balloon occlusion, pulmonary artery occlusion pressure (Ppao). No other cardiovascular monitoring device shares this pluripotential presence. While there is no debate about the measurements a pulmonary artery catheter can offer, there is controversy surrounding the benefits of this device. Nonetheless, it is clearly a useful hemodynamic monitoring tool in selected patients. However, the decision to place this invasive device must be based on the specific information sought.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Branthwaite MA, Bradley RD. Measurement of cardiac output by thermal dilution in man. J Appl Physiol. 1968;24:434–8.

    PubMed  CAS  Google Scholar 

  2. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283:447–51.

    Article  PubMed  CAS  Google Scholar 

  3. Connors Jr AF. Right heart catheterization: is it effective? New Horiz. 1997;5:195–200.

    PubMed  Google Scholar 

  4. Gore JM, Goldberg RJ, Spodick DH, Alpert JS, Dalen JE. A community-wide assessment of the use of pulmonary artery catheters in patients with acute myocardial infarction. Chest. 1987;92:721–7.

    Article  PubMed  CAS  Google Scholar 

  5. Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, Brampton W, Williams D, Young D, Rowan K, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-man): a randomised controlled trial. Lancet. 2005;366:472–7.

    Article  PubMed  Google Scholar 

  6. Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330:1717–22.

    Article  PubMed  CAS  Google Scholar 

  7. Murdoch SD, Cohen AT, Bellamy MC. Pulmonary artery catheterization and mortality in critically ill patients. Br J Anaesth. 2000;85:611–5.

    Article  PubMed  CAS  Google Scholar 

  8. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wheeler AP, Bernard GR, Thompson BT, Schoenfeld D, Wiedemann HP, Boisblanc B, et al. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 006;354:2213–24.

    Article  Google Scholar 

  9. Polanczyk CA, Rohde LE, Goldman L, Cook EF, Thomas EJ, Marcantonio ER, et al. Right heart catheterization and cardiac complications in patients undergoing noncardiac surgery: an observational study. JAMA. 2001;286:309–14.

    Article  PubMed  CAS  Google Scholar 

  10. Rhodes A, Cusack RJ, Newman PJ, Grounds RM, Bennett ED. A randomised, controlled trial of the pulmonary artery catheter in critically ill patients. Intensive Care Med. 2002;28:256–64.

    Article  PubMed  Google Scholar 

  11. Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2003;290:2713–20.

    Article  PubMed  CAS  Google Scholar 

  12. Zion MM, Balkin J, Rosenmann D, Goldbourt U, Reicher-Reiss H, Kaplinsky E, Behar S. Use of pulmonary artery catheters in patients with acute myocardial infarction, analysis of experience in 5,841 patients in the SPRINT registry. SPRINT study group. Chest. 1990;98:1331–5.

    Article  PubMed  CAS  Google Scholar 

  13. Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112:1392–402.

    Article  PubMed  Google Scholar 

  14. Kahwash R, Leier CV, Miller L. Role of the pulmonary artery catheter in diagnosis and management of heart failure. Cardiol Clin. 2011;29:281–8.

    Article  PubMed  Google Scholar 

  15. Kanchi M. Do we need a pulmonary artery catheter in cardiac anesthesia? – an Indian perspective. Ann Card Anaesth. 2011;14:25–9.

    PubMed  Google Scholar 

  16. Koo KK, Sun JC, Zhou Q, Guyatt G, Cook DJ, Walter SD, Meade MO. Pulmonary artery catheters: evolving rates and reasons for use. Crit Care Med. 2011;39:1613–8.

    Article  PubMed  Google Scholar 

  17. Vincent JL. So we use less pulmonary artery catheters – but why? Crit Care Med. 2011;39:1820–2.

    Article  PubMed  Google Scholar 

  18. Ricotta 2nd JJ, Harbuzariu C, Pulido JN, Kalra M, Oderich G, Gloviczki P, Bower TC. A novel approach using pulmonary artery catheter-directed rapid right ventricular pacing to facilitate precise deployment of endografts in the thoracic aorta. J Vasc Surg. 2012;55:1196–201.

    Article  PubMed  Google Scholar 

  19. Pinsky MR, Vincent JL. Let us use the pulmonary artery catheter correctly and only when we need it. Crit Care Med. 2005;33:1119–22.

    Article  PubMed  Google Scholar 

  20. Vincent JL, Pinsky MR, Sprung CL, Levy M, Marini JJ, Payen D, et al. The pulmonary artery catheter: in medio virtus. Crit Care Med. 2008;36:3093–6.

    Article  PubMed  Google Scholar 

  21. Manoach S, Weingart SD, Charchaflieh J. The evolution and current use of invasive hemodynamic monitoring for predicting volume responsiveness during resuscitation, perioperative, and critical care. J Clin Anesth. 2012;24:242–50.

    Article  PubMed  Google Scholar 

  22. Clermont G, Kong L, Weissfeld LA, Lave JR, Rubenfeld GD, Roberts MS, et al. The effect of pulmonary artery catheter use on costs and long-term outcomes of acute lung injury. PLoS One. 2011;6:e22512.

    Article  PubMed  CAS  Google Scholar 

  23. Barmparas G, Inaba K, Georgiou C, Hadjizacharia P, Chan LS, Demetriades D, et al. Swan-Ganz catheter use in trauma patients can be reduced without negatively affecting outcomes. World J Surg. 2011;35:1809–17.

    Article  PubMed  Google Scholar 

  24. Schwann NM, Hillel Z, Hoeft A, Barash P, Mohnle P, Miao Y, Mangano DT. Lack of effectiveness of the pulmonary artery catheter in cardiac surgery. Anesth Analg. 2011;113:994–1002.

    Article  PubMed  Google Scholar 

  25. Sakr Y, Vincent JL, Reinhart K, Payen D, Wiedermann CJ, Zandstra DF, et al. Sepsis Occurrence in Acutely Ill Patients Investigators. Use of the pulmonary artery catheter is not associated with worse outcome in the ICU. Chest. 2005;128:2722–31.

    Article  PubMed  Google Scholar 

  26. Schultz RJ, Whitfield GF, LaMura JJ, Raciti A, Krishnamurthy S. The role of physiologic monitoring in patients with fractures of the hip. J Trauma. 1985;25:309–16.

    Article  PubMed  CAS  Google Scholar 

  27. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988;94:1176–86.

    Article  PubMed  CAS  Google Scholar 

  28. Tuchschmidt J, Fried J, Astiz M, Rackow E. Elevation of cardiac output and oxygen delivery improves outcome in septic shock. Chest. 1992;102:216–20.

    Article  PubMed  CAS  Google Scholar 

  29. Bishop MH, Shoemaker WC, Appel PL, Meade P, Ordog GJ, Wasserberger J, et al. Prospective, randomized trial of survivor values of cardiac index, oxygen delivery, and oxygen consumption as resuscitation endpoints in severe trauma. J Trauma. 1995;38:780–7.

    Article  PubMed  CAS  Google Scholar 

  30. Boyd O, Grounds RM, Bennett ED. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA. 1993;270:2699–707.

    Article  PubMed  CAS  Google Scholar 

  31. Wilson J, Woods I, Fawcett J, Whall R, Dibb W, Morris C, et al. Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ. 1999;318:1099–103.

    Article  PubMed  CAS  Google Scholar 

  32. Yu M, Burchell S, Hasaniya NW, Takanishi DM, Myers SA, Takiguchi SA. Relationship of mortality to increasing oxygen delivery in patients > or = 50 years of age: a prospective, randomized trial. Crit Care Med. 1998;26:1011–9.

    Article  PubMed  CAS  Google Scholar 

  33. Lobo SM, Salgado PF, Castillo VG, Borim AA, Polachini CA, Palchetti JC, et al. Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Crit Care Med. 2000;28:3396–404.

    Article  PubMed  CAS  Google Scholar 

  34. Polonen P, Ruokonen E, Hippelainen M, Poyhonen M, Takala J. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg. 2000;90:1052–9.

    Article  PubMed  CAS  Google Scholar 

  35. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, et al. A trial of goal-oriented hemodynamic therapy in critically ill patients, SvO2 collaborative group. N Engl J Med. 1995;333:1025–32.

    Article  PubMed  CAS  Google Scholar 

  36. Alia I, Esteban A, Gordo F, Lorente JA, Diaz C, Rodriguez JA, Frutos F. A randomized and controlled trial of the effect of treatment aimed at maximizing oxygen delivery in patients with severe sepsis or septic shock. Chest. 1999;115:453–61.

    Article  PubMed  CAS  Google Scholar 

  37. Kern JW, Shoemaker WC. Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med. 2002;30:1686–92.

    Article  PubMed  Google Scholar 

  38. Yu M, Levy MM, Smith P, Takiguchi SA, Miyasaki A, Myers SA. Effect of maximizing oxygen delivery on morbidity and mortality rates in critically ill patients: a prospective, randomized, controlled study. Crit Care Med. 1993;21:830–8.

    Article  PubMed  CAS  Google Scholar 

  39. Vincent JL, Bihari DJ, Suter PM, Bruining HA, White J, Nicolas-Chanoin MH, et al. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA. 1995;274:639–44.

    Article  PubMed  CAS  Google Scholar 

  40. Godje O, Hoke K, Goetz AE, Felbinger TW, Reuter DA, Reichart B, et al. Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med. 2002;30:52–8.

    Article  PubMed  Google Scholar 

  41. Goedje O, Hoeke K, Lichtwarck-Aschoff M, Faltchauser A, Lamm P, Reichart B. Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med. 1999;27:2407–12.

    Article  PubMed  CAS  Google Scholar 

  42. Kurita T, Morita K, Kato S, Kikura M, Horie M, Ikeda K. Comparison of the accuracy of the lithium dilution technique with the thermodilution technique for measurement of cardiac output. Br J Anaesth. 1997;79:770–5.

    Article  PubMed  CAS  Google Scholar 

  43. Opdam HI, Wan L, Bellomo R. A pilot assessment of the FloTrac cardiac output monitoring system. Intensive Care Med. 2007;33:344–9.

    Article  PubMed  Google Scholar 

  44. Singer M, Clarke J, Bennett ED. Continuous hemodynamic monitoring by esophageal Doppler. Crit Care Med. 1989;17:447–52.

    Article  PubMed  CAS  Google Scholar 

  45. Valtier B, Cholley BP, Belot JP, de la Coussaye JE, Mateo J, Payen DM. Noninvasive monitoring of cardiac output in critically ill patients using transesophageal Doppler. Am J Respir Crit Care Med. 1998;158:77–83.

    Article  PubMed  CAS  Google Scholar 

  46. Squara P, Denjean D, Estagnasie P, Brusset A, Dib JC, Dubois C. Noninvasive cardiac output monitoring (NICOM): a clinical validation. Intensive Care Med. 2007;33:1191–4.

    Article  PubMed  Google Scholar 

  47. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    Article  PubMed  CAS  Google Scholar 

  48. Reinhart K, Rudolph T, Bredle DL, Hannemann L, Cain SM. Comparison of central-venous to mixed-venous oxygen saturation during changes in oxygen supply/demand. Chest. 1989;95:1216–21.

    Article  PubMed  CAS  Google Scholar 

  49. Martin C, Auffray JP, Badetti C, Perrin G, Papazian L, Gouin F. Monitoring of central venous oxygen saturation versus mixed venous oxygen saturation in critically ill patients. Intensive Care Med. 1992;18:101–4.

    Article  PubMed  CAS  Google Scholar 

  50. Teboul JL, Besbes M, Andrivet P, Oxler A, Douguet D, Zelter M, et al. A bedside index assessing the reliability of pulmonary artery occlusion pressure measurements during mechanical ventilation with positive end-expiratory pressure. J Crit Care. 1992;7:22–9.

    Article  Google Scholar 

  51. Dhaninaut JF, Devaux JY, Monsallier JF, Brunet F, Villemant D, Huyghebaert MF. Mechanisms of decreased left ventricular preload during continuous positive pressure ventilation in ARDS. Chest. 1986;90:74–80.

    Article  Google Scholar 

  52. Jardin F, Farcot JC, Boisante L, Curien N, Margairaz A, Bourdarias JP. Influences of positive end-expiratory pressure on left ventricular performance. N Engl J Med. 1981;304:387–92.

    Article  PubMed  CAS  Google Scholar 

  53. Pinsky MR, Vincent JL, DeSmet JM. Estimating left ventricular filling pressure during positive end-expiratory pressure in humans. Am Rev Respir Dis. 1991;143:25–31.

    Article  PubMed  CAS  Google Scholar 

  54. Pinsky MR. Clinical significance of pulmonary artery occlusion pressure. Intensive Care Med. 2003;29:175–8.

    PubMed  Google Scholar 

  55. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–8.

    Article  PubMed  Google Scholar 

  56. Bendjelid K, Romand JA. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med. 2003;29:352–60.

    Article  PubMed  Google Scholar 

  57. Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35:64–8.

    Article  PubMed  Google Scholar 

  58. Vincent JL, De Backer D. Oxygen transport—the oxygen delivery controversy. Intensive Care Med. 2004;30:1990–6.

    Article  PubMed  Google Scholar 

  59. Rampal T, Jhanji S, Pearse RM. Using oxygen delivery targets to optimize resuscitation in critically ill patients. Curr Opin Crit Care. 2010;16:244–9.

    Article  PubMed  Google Scholar 

  60. Leach RM, Treacher DF. The pulmonary physician in critical care: 2. Oxygen delivery and consumption in the critically ill. Thorax. 2002;57:170–7.

    Article  PubMed  CAS  Google Scholar 

  61. Pipanmekaporn T, Bunchungmongkol N, Pin On P, Punjasawadwong Y. Impact of patients’ positions on the incidence of arrhythmias during pulmonary artery catheterization. J Cardiothorac Vasc Anesth. 2012;26:391–4.

    Article  PubMed  Google Scholar 

  62. Sprung CL, Marcial EH, Garcia AA, Sequeira RF, Pozen RG. Prophylactic use of lidocaine to prevent advanced ventricular arrhythmias during pulmonary artery catheterization. Prospective double-blind study. Am J Med. 1983;75:906–10.

    Article  PubMed  CAS  Google Scholar 

  63. Sprung CL, Elser B, Schein RM, Marcial EH, Schrager BR. Risk of right bundle-branch block and complete heart block during pulmonary artery catheterization. Crit Care Med. 1989;17:1–3.

    Article  PubMed  CAS  Google Scholar 

  64. Thomson IR, Dalton BC, Lappas DG, Lowenstein E. Right bundle-branch block and complete heart block caused by the Swan-Ganz catheter. Anesthesiology. 1979;51:359–62.

    Article  PubMed  CAS  Google Scholar 

  65. Yuan H, Lee E, Patel A. Removal of pulmonary artery catheter knotted during placement by using transesophageal echocardiography. J Cardiothorac Vasc Anesth. 2010;24:1027–8.

    Article  PubMed  Google Scholar 

  66. Hida S, Ohashi S, Kinoshita H, Honda T, Yamamoto S, Kazama J, et al. Knotting of two central venous catheters: a rare complication of pulmonary artery catheterization. J Anesth. 2010;24:486–7.

    Article  PubMed  Google Scholar 

  67. Kearney TJ, Shabot MM. Pulmonary artery rupture associated with the Swan-Ganz catheter. Chest. 1995;108:1349–52.

    Article  PubMed  CAS  Google Scholar 

  68. Hoar PF, Wilson RM, Mangano DT, Avery 2nd GJ, Szarnicki RJ, Hill JD. Heparin bonding reduces thrombogenicity of pulmonary-artery catheters. N Engl J Med. 1981;305:993–5.

    Article  PubMed  CAS  Google Scholar 

  69. Leatherman JW, Shapiro RS. Overestimation of pulmonary artery occlusion pressure in pulmonary hypertension due to partial occlusion. Crit Care Med. 2003;31:93–7.

    Article  PubMed  Google Scholar 

  70. Rizvi K, Deboisblanc BP, Truwit JD, Dhillon G, Arroliga A, Fuchs BD, et al. NIH/NHLBI ARDS Clinical Trials Network. Effect of airway pressure display on interobserver agreement in the assessment of vascular pressures in patients with acute lung injury and acute respiratory distress syndrome. Crit Care Med. 2005;33:98,103.

    Article  PubMed  CAS  Google Scholar 

  71. Field L. Electrocardiography and invasive monitoring of the cardiothoracic patient, Atlas of cardiothoracic anesthesia, vol. 1. New York: Current Medicine; 2009.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the NIH grants HL67181 and HL073198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Pinsky MD CM, Dr hc, FCCP, MCCM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ogundele, O., Bose, E., Pinsky, M.R. (2014). Pulmonary Artery Catheterization. In: Ehrenfeld, J., Cannesson, M. (eds) Monitoring Technologies in Acute Care Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8557-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8557-5_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8556-8

  • Online ISBN: 978-1-4614-8557-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics