Skip to main content

Immunogenetics of Celiac Disease

  • Chapter
  • First Online:
Celiac Disease

Abstract

Celiac disease (CD) is a model for common complex disorders with a high degree of heritability. The human leukocyte antigen (HLA) DQ genotype, specifically HLA-DQ2 and HLA-DQ8, is the strongest genetic risk factor. Genome-wide association studies (GWAS) have identified 57 single nucleotide polymorphisms (SNPs) located in the associated 39 non-HLA regions with mainly immunological functions. Together with HLA, these regions explain approximately 54 % of the disease’s heritability. Molecular functional analyses are necessary to delineate the true causal genetic variants and the pathways involved. Since CD shares many of its genetic susceptibility regions and implicated pathways with other immune-related diseases, a combined analysis may discover more common genetic variants with smaller effect sizes. HLA-DQ genotyping can already be used to exclude a diagnosis of CD, for example, as a test in the screening of individuals from high-risk groups, such as patients with type 1 diabetes or autoimmune thyroiditis, and first-degree relatives of CD patients. Discovering more genetic susceptibility variants and the pathways involved may ultimately contribute to risk stratification for follow-up and treatment, and lead to new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dubé C, Rostom A, Sy R, Cranney A, Saloojee N, Garritty C, et al. The prevalence of celiac disease in average-risk and at-risk Western European populations: a systematic review. Gastroenterology. 2005;128:S57–67.

    Article  PubMed  Google Scholar 

  2. Myléus A, Ivarsson A, Webb C, Danielsson L, Hernell O, Högberg L, et al. Celiac disease revealed in 3 % of Swedish 12-year-olds born during an epidemic. J Pediatr Gastroenterol Nutr. 2009;49:170–6.

    Article  PubMed  Google Scholar 

  3. Risch N. Assessing the role of HLA-linked and unlinked determinants of disease. Am J Hum Genet. 1987;40:1–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Petronzelli F, Bonamico M, Ferrante P, Grillo R, Mora B, Mariani P, et al. Genetic contribution of the HLA region to the familial clustering of coeliac disease. Ann Hum Genet. 1997;61:307–17.

    Article  CAS  PubMed  Google Scholar 

  5. Bevan S, Popat S, Braegger CP, Busch A, O’Donoghue D, Falth-Magnusson K, et al. Contribution of the MHC region to the familial risk of coeliac disease. J Med Genet. 1999;36:687–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Fasano A, Berti I, Gerarduzzi T, Not T, Colletti RB, Drago S, et al. Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. Arch Intern Med. 2003;163:286–92.

    Article  PubMed  Google Scholar 

  7. Nisticò L, Fagnani C, Coto I, Percopo S, Cotichini R, Limongelli MG, et al. Concordance, disease progression, and heritability of coeliac disease in Italian twins. Gut. 2006;55:803–8.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Greco L, Romino R, Coto I, Di Cosmo N, Percopo S, Maglio M, et al. The first large population based twin study of coeliac disease. Gut. 2002;50:624–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Falchuk ZM, Rogentine GN, Strober W. Predominance of histocompatibility antigen HL-A8 in patients with gluten-sensitive enteropathy. J Clin Invest. 1972;51:1602–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Keuning JJ, Peña AS, van Leeuwen A, van Hooff JP, van Rood JJ. HLA-DW3 associated with coeliac disease. Lancet. 1976;1(7958):506–8.

    Article  CAS  PubMed  Google Scholar 

  11. Price P, Witt C, Allcock R, Sayer D, Garlepp M, Kok CC, et al. The genetic basis for the association of the 8.1 ancestral haplotype (A1, B8, DR3) with multiple immunopathological diseases. Immunol Rev. 1999;167:257–74.

    Article  CAS  PubMed  Google Scholar 

  12. Tosi R, Vismara D, Tanigaki N, Ferrara GB, Cicimarra F, Buffolano W, et al. Evidence that celiac disease is primarily associated with a DC locus allelic specificity. Clin Immunol Immunopathol. 1983;28:395–404.

    Article  CAS  PubMed  Google Scholar 

  13. Sollid LM, Markussen G, Ek J, Gjerde H, Vartdal F, Thorsby E. Evidence for a primary association of celiac disease to a particular HLA-DQ α/β heterodimer. J Exp Med. 1989;169:345–50.

    Article  CAS  PubMed  Google Scholar 

  14. Van Belzen MJ, Koeleman BP, Crusius JB, Meijer JW, Bardoel AF, Pearson PL, et al. Defining the contribution of the HLA region to cis DQ2-positive coeliac disease patients. Genes Immun. 2004;5:215–20.

    Article  PubMed  Google Scholar 

  15. Vader W, Stepniak D, Kooy Y, Mearin L, Thompson A, van Rood JJ, et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc Natl Acad Sci USA. 2003;100:12390–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Romanos J, Wijmenga C. Predicting susceptibility to celiac disease by genetic risk profiling. Ann Gastroenterol Hepatol. 2010;1:11–8.

    Google Scholar 

  17. Lundin KE, Scott H, Hansen T, Paulsen G, Halstensen TS, Fausa O, et al. Gliadin-specific, HLA-DQ(α1*0501, β1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J Exp Med. 1993;178:187–96.

    Article  CAS  PubMed  Google Scholar 

  18. Lundin KE, Scott H, Fausa O, Thorsby E, Sollid LM. T cells from the small intestinal mucosa of a DR4, DQ7/DR4, DQ8 celiac disease patient preferentially recognize gliadin when presented by DQ8. Hum Immunol. 1994;41:285–91.

    Article  CAS  PubMed  Google Scholar 

  19. Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci USA. 2004;101:4175–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Henderson KN, Tye-Din JA, Reid HH, Chen Z, Borg NA, Beissbarth T, et al. A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. Immunity. 2007;27:23–34.

    Article  CAS  PubMed  Google Scholar 

  21. Spurkland A, Sollid LM, Polanco I, Vartdal F, Thorsby E. HLA-DR and -DQ genotypes of celiac disease patients serologically typed to be non-DR3 or non-DR5/7. Hum Immunol. 1992;35:188–92.

    Article  CAS  PubMed  Google Scholar 

  22. Louka AS, Sollid LM. HLA in coeliac disease: unravelling the complex genetics of a complex disorder. Tissue Antigens. 2003;61:105–17.

    Article  CAS  PubMed  Google Scholar 

  23. Abadie V, Sollid LM, Barreiro LB, Jabri B. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu Rev Immunol. 2011;29:493–525.

    Article  CAS  PubMed  Google Scholar 

  24. Liu E, Rewers M, Eisenbarth GS. Genetic testing: who should do the testing and what is the role of genetic testing in the setting of celiac disease? Gastroenterology. 2005;128:S33–7.

    Article  PubMed  Google Scholar 

  25. Ahn R, Ding YC, Murray J, Fasano A, Green PH, Neuhausen SL, et al. Association analysis of the extended MHC region in celiac disease implicates multiple independent susceptibility loci. PLoS One. 2012;7:e36926.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Van Heel DA, Franke L, Hunt KA, Gwilliam R, Zhernakova A, Inouye M, et al. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet. 2007;39:827–9.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hunt KA, Zhernakova A, Turner G, Heap GA, Franke L, Bruinenberg M, et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet. 2008;40:395–402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Trynka G, Zhernakova A, Romanos J, Franke L, Hunt KA, Turner G, et al. Coeliac disease-associated risk variants in TNFAIP3 and REL implicate altered NF-κB signalling. Gut. 2009;58:1078–83.

    Article  CAS  PubMed  Google Scholar 

  29. Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A, et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet. 2010;42:295–302.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Trynka G, Hunt KA, Bockett NA, Romanos J, Mistry V, Szperl A, et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet. 2011;43:1193–201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Trynka G, Wijmenga C, van Heel DA. A genetic perspective on coeliac disease. Trends Mol Med. 2010;16:537–50.

    Article  CAS  PubMed  Google Scholar 

  32. Fasano A, Shea-Donohue T. Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol. 2005;2:416–22.

    Article  CAS  PubMed  Google Scholar 

  33. Forsberg G, Fahlgren A, Hörstedt P, Hammarström S, Hernell O, Hammarström ML. Presence of bacteria and innate immunity of intestinal epithelium in childhood celiac disease. Am J Gastroenterol. 2004;99:894–904.

    Article  PubMed  Google Scholar 

  34. Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol. 2009;62:264–9.

    Article  CAS  PubMed  Google Scholar 

  35. Kumar V, Wijmenga C, Withoff S. From genome-wide association studies to disease mechanisms: celiac disease as a model for autoimmune diseases. Semin Immunopathol. 2012;34:567–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet. 2012;13:135–45.

    Article  CAS  PubMed  Google Scholar 

  37. The ENCODE Project Consortium. Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature. 2007;447:799–816.

    Article  PubMed Central  Google Scholar 

  38. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25:1915–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kumar V, Westra H, Karjalainen J, Zhernakova DV, Esko T, Hrdlickova B, et al. Human disease-associated genetic variation impacts large intergenic non-coding RNA expression. PLoS Genet. 2013;9:e1003201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hadithi M, de Boer H, Meijer JW, Willekens F, Kerckhaert JA, Heijmans R, et al. Coeliac disease in Dutch patients with Hashimoto’s thyroiditis and vice versa. World J Gastroenterol. 2007;13:1715–22.

    PubMed  Google Scholar 

  42. Collin P, Reunala T, Pukkala E, Laippala P, Keyriläinen O, Pasternack A. Coeliac disease-associated disorders and survival. Gut. 1994;35:1215–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ventura A, Magazzù G, Greco L. Duration of exposure to gluten and risk for autoimmune disorders in patients with celiac disease. SIGEP Study Group for Autoimmune Disorders in Celiac Disease. Gastroenterology. 1999;117:297–303.

    Article  CAS  PubMed  Google Scholar 

  44. Sategna Guidetti C, Solerio E, Scaglione N, Aimo G, Mengozzi G. Duration of gluten exposure in adult coeliac disease does not correlate with the risk for autoimmune disorders. Gut. 2001;49:502–5.

    Article  CAS  PubMed  Google Scholar 

  45. Cosnes J, Cellier C, Viola S, Colombel JF, Michaud L, Sarles J, et al. Incidence of autoimmune diseases in celiac disease: protective effect of the gluten-free diet. Clin Gastroenterol Hepatol. 2008;6:753–8.

    Article  PubMed  Google Scholar 

  46. Viljamaa M, Kaukinen K, Huhtala H, Kyrönpalo S, Rasmussen M, Collin P. Coeliac disease, autoimmune diseases and gluten exposure. Scand J Gastroenterol. 2005;40:437–43.

    Article  CAS  PubMed  Google Scholar 

  47. Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P, et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes. 2008;57:1084–92.

    Article  CAS  PubMed  Google Scholar 

  48. Bao F, Yu L, Babu S, Wang T, Hoffenberg EJ, Rewers M, et al. One third of HLA DQ2 homozygous patients with type 1 diabetes express celiac disease-associated transglutaminase autoantibodies. J Autoimmun. 1999;13:143–8.

    Article  CAS  PubMed  Google Scholar 

  49. Cotsapas C, Voight BF, Rossin E, Lage K, Neale BM, Wallace C, et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 2011;7:e1002254.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Zhernakova A, van Diemen CC, Wijmenga C. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat Rev Genet. 2009;10:43–55.

    Article  CAS  PubMed  Google Scholar 

  51. Monsuur AJ, de Bakker PI, Zhernakova A, Pinto D, Verduijn W, Romanos J, et al. Effective detection of human leukocyte antigen risk alleles in celiac disease using tag single nucleotide polymorphisms. PLoS One. 2008;3:e2270.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Koskinen L, Romanos J, Kaukinen K, Mustalahti K, Korponay-Szabó I, Barisani D, et al. Cost-effective HLA typing with tagging SNPs predicts celiac disease risk haplotypes in the Finnish, Hungarian, and Italian populations. Immunogenetics. 2009;61:247–56.

    Article  CAS  PubMed  Google Scholar 

  53. Husby S, Koletzko S, Korponay-Szabó IR, Mearin ML, Phillips A, Shamir R, et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr. 2012;54:136–60.

    Article  CAS  PubMed  Google Scholar 

  54. Hill ID, Dirks MH, Liptak GS, Colletti RB, Fasano A, Guandalini S, et al. Guideline for the diagnosis and treatment of celiac disease in children: recommendations of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr. 2005;40:1–19.

    Article  PubMed  Google Scholar 

  55. Bourgey M, Calcagno G, Tinto N, Gennarelli D, Margaritte-Jeannin P, Greco L, et al. HLA related genetic risk for coeliac disease. Gut. 2007;56:1054–9.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Romanos J, van Diemen CC, Nolte IM, Trynka G, Zhernakova A, Fu J, et al. Analysis of HLA and non-HLA alleles can identify individuals at high risk for celiac disease. Gastroenterology. 2009;137:834–40.

    Article  CAS  PubMed  Google Scholar 

  57. Hogen Esch CE, Rosén A, Auricchio R, Romanos J, Chmielewska A, Putter H, et al. The Prevent CD Study design: towards new strategies for the prevention of coeliac disease. Eur J Gastroenterol Hepatol. 2010;22:1424–30.

    PubMed  Google Scholar 

  58. Cho JH, Gregersen PK. Genomics and the multifactorial nature of human autoimmune disease. N Engl J Med. 2011;365:1612–23.

    Article  CAS  PubMed  Google Scholar 

  59. Hindorff LA, MacArthur J (European Bioinformatics Institute), Morales J (European Bioinformatics Institute), Junkins HA, Hall PN, Klemm AK, and Manolio TA. A catalog of published genome-wide association studies. Available at: http://www.genome.gov/gwastudies. Accessed 01/15, 2013.

Download references

Acknowledgments

We thank Jackie Senior for editing the manuscript.

Funding

Work in the Wijmenga group is supported by grants from the Celiac Disease Consortium (an innovative cluster approved by the Netherlands Genomics Initiative and partly funded by the Dutch Government (grant BSIK03009 to CW)) and the Dutch Digestive Disease Foundation (MLDS WO11-30 to CW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther C. de Haas M.D. Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Haas, E.C., Kumar, V., Wijmenga, C. (2014). Immunogenetics of Celiac Disease. In: Rampertab, S., Mullin, G. (eds) Celiac Disease. Clinical Gastroenterology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8560-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8560-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-8559-9

  • Online ISBN: 978-1-4614-8560-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics