Skip to main content

Growth Patterns of Tomato Plants Subjected to Two Non-conventional Abiotic Stresses: UV-C Irradiations and Electric Fields

  • Chapter
  • First Online:
Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment

Abstract

Ultraviolet-C radiation (UV-C = 100–280 nm) is strongly affected by ozone levels, so that the amount of this radiation reaching the Earth’s surface is extremely low. In the future, UV-C radiation is expected to increase as the result of stratospheric ozone depletion due to atmospheric pollution, with strong negative effects on economically important crops. High UV-C doses determine irreversible damages both at plant physiological and morphological levels, leading plants to death. Also electric fields (EFs) can determine changes at morphological and physiological levels in plants. Electro-culture can accelerate growth rates, increase yields, improve crop quality and plant protection against diseases, insects and frost.

This chapter is focused on the effects of the exposition of tomato (Lycopersicon esculentum Mill.), one of the most economically important crop, to UV-C radiation and DC electric field, able to determine important and significant alterations in plant growth. The protection of tomato plants against UV-C, combined with the growth-promoting effects of electro-culture, could allow farmers to grow bigger and better crops in less time, with less effort, and at a lower cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ait Barka E (2001) Protective enzymes against reactive oxygen species during ripening of tomato (Lycopersicon esculentum) fruits in response to low amounts of UV-C. Aust J Plant Physiol 28:785–791

    Google Scholar 

  • Albacete A, Ghanem ME, Martinez-Andujar C, Acosta M, Sanchez-Bravo J, Martinez V, Lutts S, Dodd IC, Perez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131

    Article  PubMed  CAS  Google Scholar 

  • Berghoefer T, Flickinger B, Frey W (2012) Aspects of plant plasmalemma charging induced by external electric field pulses. Plant Signal Behav 7:322–324

    Article  PubMed  Google Scholar 

  • Bertram L, Lercari B (1996) The use of UV radiation to control the architecture of Salvia splendens plants. II. Relationships between PAR levels and radiation in the photoregulation of stem elongation. Photochem Photobiol 64:131–136

    Article  CAS  Google Scholar 

  • Black JD, Forsyth FR, Fensom DS, Ross RB (1971) Electrical stimulation and its effects on growth and ion accumulation in tomato plants. Can J Bot 49:1809–1815

    Article  Google Scholar 

  • Booij-James IS, Dube SK, Jansen MAK, Edelman M, Mattoo AK (2000) Ultraviolet-B radiation impacts light-mediated turnover of the photosystem II reaction center heterodimer in Arabidopsis mutants altered in phenolic metabolism. Plant Physiol 124:1275–1283

    Article  PubMed  CAS  Google Scholar 

  • Brown MJ, Loew LM (1994) Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. J Cell Biol 127:117–128

    Article  PubMed  CAS  Google Scholar 

  • Frederick JE (1993) Ultraviolet sunlight reaching the Earth’s surface: a review of recent research. Photochem Photobiol 57:175–178

    Article  Google Scholar 

  • Goldsworthy A, Rathore KS (1985) The electrical control of growth in plant tissue cultures: the polar transport of auxin. J Exp Bot 36:1134–1141

    Article  CAS  Google Scholar 

  • Häder DP, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285

    Article  PubMed  Google Scholar 

  • Hamada S, Ezaki S, Hayashi K, Toko K, Yamafuji K (1992) Electric current precedes emergence of a lateral root in higher plants. Plant Physiol 100:614–619

    Article  PubMed  CAS  Google Scholar 

  • Hollósy F (2002) Effects of ultraviolet radiation on plant cell. Micron 33:179–197

    Article  PubMed  Google Scholar 

  • Hosseini Sarghein S, Carapetian J, Khara J (2011) The effects of UV radiation on some structural and ultrastructural parameters in pepper (Capsicum longum A. DC.). Turk J Biol 35:69–77

    Google Scholar 

  • Ishikawa H, Evans ML (1990) Electrotropism of maize roots. Plant Physiol 94:913–918

    Article  PubMed  CAS  Google Scholar 

  • Jagadeesh SL, Charles MT, Gariepy Y, Goyette B, Raghavan GSV, Vigneault C (2009) Influence of postharvest UV-C hormesis on the bioactive components of tomato during post-treatment handling. Food Bioprocess Technol 4:1463–1472

    Article  Google Scholar 

  • Jansen MAK, Bornman JF (2012) UV-B radiation: from generic stressor to specific regulator. Physiol Plant 145:501–504

    Article  PubMed  CAS  Google Scholar 

  • Kataria S, Guruprasad KN (2012) Solar UV-B and UV-A/B exclusion effects on intraspecific variations in crop growth and yield of wheat varieties. Field Crop Res 125:8–13

    Article  Google Scholar 

  • Katerova Z, Ivanov S, Prinsen E, Van Onckelen H, Alexieva V, Azmi A (2009) Low doses of ultraviolet-B or ultraviolet-C radiation affect ACC, ABA and IAA levels in young pea plants. Biol Plant 53:365–368

    Article  CAS  Google Scholar 

  • Lercari B, Diara C, Gorini S, Bertram L (2003) Sull’impiego di trattamenti UV nel controllo della taglia delle cucurbitacee in vivaio. Italus Hortus 10:88–90

    Google Scholar 

  • Li XM, Zhamg LH, Ma LJ, Chen Q, Wang LL (2006) Effects of duration of UV-C radiation on photosynthetic characteristics and activity of antioxidant enzyme in pea seedlings. J Ecol Rural Environ 22:34–37

    Google Scholar 

  • Li XM, Zhang LH, He XY, Hao L (2007) Photosynthetic responses of wheat and pea seedlings to enhanced UV-C radiation and their resistances. Chin J App Ecol 18:641–645

    CAS  Google Scholar 

  • Liu LH, Zabaras D, Bennett LE, Aguas P, Woonton BW (2009) Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage. Food Chem 115:495–500

    Article  CAS  Google Scholar 

  • Murali NS, Saxe H (1984) Effects of ultraviolet-C radiation on net photosynthesis, transpiration and dark respiration of Spathiphyllum wallisii. Physiol Plant 60:192–196

    Article  CAS  Google Scholar 

  • Najeeb U, Xu L, Ahmed ZI, Rasheed M, Jilani G, Naeem MS, Shen W, Zhou W (2011) Ultraviolet-C mediated physiological and ultrastructural alterations in Juncus effusus L. shoots. Acta Physiol Plant 33:481–488

    Article  CAS  Google Scholar 

  • Nawkar GM, Maibam P, Park JH, Sahi VP, Lee SY, Kang CH (2013) UV-induced cell death in plants. Int J Mol Sci 14:1608–1628

    Article  PubMed  CAS  Google Scholar 

  • Nechitailo G, Gordeev A (2004) The use of an electric field in increasing the resistance of plants to the action of unfavorable space flight factors. Adv Space Res 34:1562–1565

    Article  PubMed  CAS  Google Scholar 

  • Rahimzadeh P, Hosseini S, Dilmaghani K (2011) Effects of UV-A and UV-C radiation on some morphological and physiological parameters in Savory (Satureja hortensis L.). Ann Biol Res 2:164–171

    CAS  Google Scholar 

  • Robinson KR (1985) The responses of cells to electrical fields: a review. J Cell Biol 101:2023–2027

    Article  PubMed  CAS  Google Scholar 

  • Rozema J, van de Staaij J, Bjorn LO, Caldwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28

    Article  PubMed  CAS  Google Scholar 

  • Santos I, Fidalgo F, Almeida JM, Salema R (2004) Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation. Plant Sci 167:925–935

    Article  CAS  Google Scholar 

  • Scopa A, Colacino C, Barone Lumaga MR, Pariti L, Martelli G (2009) Effects of a weak DC electric field on root growth in Arundo donax (Poaceae). Acta Agric Scand B 5:481–484

    Google Scholar 

  • Siddiqui A, Dawar S, Javed Zaki M, Hamid N (2011) Role of ultra violet (UV-C) radiation in the control of root infecting fungi on groundnut and mung bean. Pak J Bot 43(4):2221–2224

    Google Scholar 

  • Sugar D, Dussi MC (1998) Using hue difference to describe and compare bi-color pear cultivars. Acta Hortic 475:593–598

    Google Scholar 

  • Teramura AH (1983) Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiol Plant 58:415–427

    Article  CAS  Google Scholar 

  • Teramura AH, Sullivan JH (1994) Effects of UV-B radiation on photosynthesis and growth of terrestrial plant. Photosynth Res 39:463–473

    Article  CAS  Google Scholar 

  • Teramura AH, Tevini M, Bornman JF, Caldwell MM, Kulandaivelu G, Björn LO (1991) Terrestrial plants, Chapter 3. In: Environmental effects of ozone depletion. United Nations Environment Programme, Nairobi.

    Google Scholar 

  • Vallverdú-Queralt A, Oms-Oliu G, Odriozola-Serrano I, Lamuela-Raventós RM, Martín-Belloso O, Elez-Martínez P (2013) Metabolite profiling of phenolic and carotenoid contents in tomatoes after moderate-intensity pulsed electric field treatments. Food Chem 136:199–205

    Article  PubMed  Google Scholar 

  • van West P, Morris BM, Reid B, Appiah AA, Osborne MC, Campbell TA, Shepherd SJ (2002) Oomycete plant pathogens use electric fields to target roots. Mol Plant Microbe Interact 15:790–798

    Article  PubMed  Google Scholar 

  • Wang Y-Q, Wang J-H (2004) Effect of electric fertilizer on soil properties. Chin Geogr Sci 14:71–74

    Article  Google Scholar 

  • Wawrecki W, Zagórska-Marek B (2007) Influence of a weak DC electric field on root meristem architecture. Ann Bot 100:791–796

    Article  PubMed  Google Scholar 

  • Wolverton C, Mullen JL, Ishikawa H, Evans ML (2000) Two distinct regions of response drive differential growth in Vigna root electrotropism. Plant Cell Environ 23:1275–1280

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Sofo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sofo, A., Castronuovo, D., Lovelli, S., Tataranni, G., Scopa, A. (2014). Growth Patterns of Tomato Plants Subjected to Two Non-conventional Abiotic Stresses: UV-C Irradiations and Electric Fields. In: Ahmad, P., Wani, M. (eds) Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8600-8_10

Download citation

Publish with us

Policies and ethics