Skip to main content

Abstract

A clue for salt tolerance is ability of plants to maintain high cytosolic K+/Na+ ratio in metabolically active tissues as well as turgor, despite a low water potential in a salinized soil. On the cellular level, this is achieved by Na+ extrusion or its vacuolar sequestration, decrease of the permeability of vacuolar and plasma membrane to Na+ and, the last but not the least, better K+ retention. Active Na+ transport from cytosol to exterior or to vacuolar lumen is mediated by Na+/H+ exchangers and is fueled by H+ pumps. On the contrary, Na+ entrance to the cytosol is thermodynamically downhill and is mediated by a variety of nonselective channels in plasma membrane and tonoplast. Yet Na+ entry, mediated by low- and high-affinity transporters of plasma membrane, may be equally important. Selectivity, gating and regulation, as well as relative expression of these channels and transporters are crucial for salt tolerance. Attention should be paid to the fact that on the onset of the salt stress, membrane potential difference and ion conductance are not anymore the same, but are substantially remodeled by salt itself and stress-related factors. In particular, increases of reactive oxygen species and polyamines levels under stress can inhibit some K+ and cation channels, modulate the activity of plasma membrane pumps, and, finally, induce novel conductance in the cell membrane. K+ efflux from the cell is governed by Na+-induced plasma membrane depolarization. Salt-tolerant plants appear to better control membrane potential difference and/or show lower expression of outwardly rectifying or voltage-independent K+ and K+-permeable channels in the plasma membrane. On the contrary, sustained activity of vacuolar K+ channels under saline conditions may help to hold high cytosolic K+/Na+ ratio at the expense of vacuolar K+ pool. Correct evaluation of cytosolic and vacuolar ionic concentrations is methodologically difficult, but necessary. Few available studies show important differences in ion distributions between different cells along with contrasting patterns for mono- and dicotyledonous plants. In perspective, selective regulation of the expression of K+ and cation channels in plasma and vacuolar membranes in a combination with a monitoring of resulted changes in ion relations for cytosol and vacuole in different plant tissues may provide an intelligent strategy to create salt-tolerant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    PubMed  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    PubMed  Google Scholar 

  • Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2:3–12

    CAS  PubMed  Google Scholar 

  • Amtmann A, Fischer M, Marsh EL, Stefanovic A, Sanders D, Schachtman DP (2001) The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt-sensitive yeast strain. Plant Physiol 126:1061–1071

    CAS  PubMed  Google Scholar 

  • Amtmann A, Armengaud P, Volkov V (2004) Potassium nutrition and salt stress. In: Blatt MR (ed) Membrane transport in plants. Blackwell, Oxford, pp 316–348

    Google Scholar 

  • An Z, Jing W, Liu Y, Zhang W (2008) Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot 59:815–825

    CAS  PubMed  Google Scholar 

  • Anderson WP, Willcocks DA, Wright BJ (1977) Electrophysiological measurements on the root of Atriplex hastata. J Exp Bot 28:894–901

    CAS  Google Scholar 

  • Angelini R, Cona A, Federico R, Fincato P, Tavladoraki P, Tisi A (2010) Plant amine oxidases “on the move”: an update. Plant Physiol Biochem 48:560–564

    CAS  PubMed  Google Scholar 

  • Anil V, Krishnamurthy P, Kuruvilla S, Sucharitha K, Thomas G, Mathew MK (2005) Regulation of the uptake and distribution of Na in shoots of rice (Oryza sativa) variety Pokkali: role of Ca2+ in salt tolerance response. Physiol Plant 124:451–464

    CAS  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254

    CAS  PubMed  Google Scholar 

  • Ashraf M, Rahmatullah K, Afzal M, Ahmed R, Mujeeb F, Sarwar A, Ali L (2010) Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant Soil 326:381–391

    CAS  Google Scholar 

  • Bähring R, Bowie D, Benveniste M, Mayer ML (1997) Permeation and block of rat GluR6 glutamate receptor channels by internal and external polyamines. J Physiol 502:575–589

    PubMed  Google Scholar 

  • Balagué C, Lin BQ, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15:365–379

    PubMed  Google Scholar 

  • Blatt MR, Gradmann D (1997) K+-sensitive gating of the K+ outward rectifier in Vicia guard cells. J Membr Biol 158:241–256

    CAS  PubMed  Google Scholar 

  • Bonales-Alatorre E, Pottosin I, Shabala L, Chen Z-H, Zeng F, Jacobsen S-E, Shabala S (2013) Plasma and vacuolar membrane transporters conferring genotypicdifference in salinity tolerance in a halophyte species, Chenopodiumquinoa. Int J Mol Sci 14:9267–9285

    Google Scholar 

  • Bose J, Pottosin II, Shabala SS, Palmgren MG, Shabala S (2011) Calcium efflux systems in stress signaling and adaptation in plants. Front Plant Sci 2:85

    PubMed  Google Scholar 

  • Bothmer R, Sato K, Komatsuda T, Yasuda S, Fischbeck G (2003) The domestication of cultivated barley. In: Bothmer R, Hintum TV, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier, Amsterdam, pp 9–27

    Google Scholar 

  • Brüggemann LI, Pottosin II, Schönknecht G (1998) Cytoplasmic polyamines block the fast activating vacuolar cation channel. Plant J 16:101–105

    Google Scholar 

  • Brüggemann LI, Pottosin II, Schönknecht G (1999) Selectivity of the fast activating vacuolar cation channel. J Exp Bot 50:873–876

    Google Scholar 

  • Cao Y, Jin X, Huang H, Derebe MG, Levin EJ, Kabaleeswaran V, Pan Y, Punta M, Love J, Weng J, Quick M, Ye S, Kloss B, Bruni R, Martínez-Hackert E, Hendrickson WA, Rost B, Javitch JA, Rajashankar KR, Jiang YX, Zhou M (2011) Crystal structure of a potassium ion transporter, TrkH. Nature 471:336–340

    CAS  PubMed  Google Scholar 

  • Carden DE, Walter DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676–683

    CAS  PubMed  Google Scholar 

  • Cárdenas L (2009) New findings in the mechanisms regulating polar growth in root hair cells. Plant Signal Behav 4:4–8

    PubMed  Google Scholar 

  • Chen S, Li J, Wang T, Wang S, Polle A, Hüttermann A (2002) Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar. J Plant Growth Regul 21:224–233

    CAS  Google Scholar 

  • Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230–1246

    CAS  Google Scholar 

  • Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S (2007a) Root plasma membrane transporters controlling K+⁄Na+ homeostasis in salt stressed barley. Plant Physiol 145:1714–1725

    CAS  PubMed  Google Scholar 

  • Chen ZH, Zhou MX, Newman IA, Mendham NJ, Zhang GP, Shabala S (2007b) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34:150–162

    CAS  Google Scholar 

  • Cheng N-H, Pittman JK, Zhu J-K, Hirschi KD (2004) The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. J Biol Chem 279:2922–2926

    CAS  PubMed  Google Scholar 

  • Christopher DA, Borsics T, Yuen CYL, Ullmer W, Andeme-Ondzighi C, Andres MA, Kang BH, Staehelin LA (2007) The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells. BMC Plant Biol 7:48

    PubMed  Google Scholar 

  • Colmenero-Flores JM, Martínez G, Gamba G, Vázquez N, Iglesias DJ, Brumós J, Talón M (2007) Identification and functional characterization of cation-chloride cotransporters in plants. Plant J 50:278–292

    CAS  PubMed  Google Scholar 

  • Conn S, Gulliham M (2010) Comparative physiology of elemental distributions in plants. Ann Bot 105:1081–1102

    CAS  PubMed  Google Scholar 

  • Cuin TA, Shabala S (2005) Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant Cell Physiol 46:1924–1933

    CAS  PubMed  Google Scholar 

  • Cuin TA, Shabala S (2007) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225:753–761

    CAS  PubMed  Google Scholar 

  • Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657–661

    CAS  PubMed  Google Scholar 

  • Cuin TA, Betts SA, Chalamandrier R, Shabala S (2008) A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59:2697–2706

    CAS  PubMed  Google Scholar 

  • D’Onofrio CD, Kader A, Lindberg S (2005) Uptake of sodium in quince, sugar beet, and wheat protoplasts determined by the fluorescent sodium-binding dye benzofuran isophthalate. J Plant Physiol 162:421–428

    PubMed  Google Scholar 

  • Das KC, Misra HP (2004) Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol Cell Biochem 262:127–133

    CAS  PubMed  Google Scholar 

  • Davenport RJ, Tester M (2000) A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol 122:823–834

    CAS  PubMed  Google Scholar 

  • Davis RF (1972) Membrane electrical potentials in the cortex and stele of corn roots. Plant Physiol 49:451–452

    CAS  PubMed  Google Scholar 

  • De Boer AH, Volkov V (2003) Logistics of water and salt transport through the plant: structure and functioning of the xylem. Plant Cell Environ 26:87–101

    Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    CAS  PubMed  Google Scholar 

  • Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128:379–387

    CAS  PubMed  Google Scholar 

  • Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. J Cell Sci 116:81–88

    CAS  PubMed  Google Scholar 

  • Demidchik V, Essah PA, Tester M (2004) Glutamate activates cation currents in the plasma membrane of Arabidopsis root cells. Planta 219:167–175

    CAS  PubMed  Google Scholar 

  • Demidchik V, Shabala SN, Davies JM (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant J 49:377–386

    CAS  PubMed  Google Scholar 

  • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479

    CAS  PubMed  Google Scholar 

  • Dennison KL, Spalding EP (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol 124:1511–1514

    CAS  PubMed  Google Scholar 

  • Dietrich P, Anschütz U, Kugler A, Becker D (2010) Physiology and biophysics of plant ligand-gated ion channels. Plant Biol 12:80–93

    CAS  PubMed  Google Scholar 

  • Dobrovinskaya OR, Muñiz J, Pottosin II (1999a) Inhibition of vacuolar ion channels by polyamines. J Membr Biol 167:127–140

    CAS  PubMed  Google Scholar 

  • Dobrovinskaya OR, Muñiz J, Pottosin II (1999b) Asymmetric block of the plant vacuolar Ca2+ permeable channel by organic cations. Eur Biophys J 28:552–563

    CAS  PubMed  Google Scholar 

  • Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569:317–320

    CAS  PubMed  Google Scholar 

  • Dragišić Maksimović E, Zhang J, Zeng F, Živanović BD, Shabala L, Zhou M, Shabala S (2013) Linking oxidative and salinity stress tolerance in barley: can root antioxidant enzyme activity be used as a measure of stress tolerance? Plant Soil 365:141–155

    Google Scholar 

  • Dreyer I, Blatt MR (2009) What makes a gate? The ins and outs of Kv-like K+ channels in plants. Trends Plant Sci 14:383–390

    CAS  PubMed  Google Scholar 

  • Drouin H, Hermann A (1994) Intracellular action of spermine on neuronal Ca2+ and K+ currents. Eur J Neurosci 6:412–419

    CAS  PubMed  Google Scholar 

  • Dubos C, Huggins D, Grant GH, Knight MR, Campbell MM (2003) A role for glycine in the gating of plant NMDA-like receptors. Plant J 35:800–810

    CAS  PubMed  Google Scholar 

  • Dunlop J, Bowling DJF (1971) The movement of ions to the xylem exudate of maize roots. I. Profiles of membrane potential and vacuolar potassium activity across the root. J Exp Bot 22:434–444

    CAS  Google Scholar 

  • Epimashko S, Meckel T, Fischer-Schliebs E, Lüttge U, Thiel G (2004) Two functionally different vacuoles for static and dynamic purposes in one plant mesophyll leaf cell. Plant J 37:294–300

    PubMed  Google Scholar 

  • Epstein E, Rains DW (1965) Carrier-mediated cation transport in barley roots: kinetic evidence for a spectrum of active sites. Proc Natl Acad Sci U S A 53:1320–1324

    CAS  PubMed  Google Scholar 

  • Ershov PV, Reshetova OS, Trofimova MS, Babakov AV (2005) Activity of ion transporters and salt tolerance in barley. Russ J Plant Physiol 52:765–773

    CAS  Google Scholar 

  • Eshel A, Waisel Y, Ramani A (1974) The role of sodium in stomatal movement of a halophyte: a study by X-ray microanalysis. In: Wehrmann J (ed) Proceedings of the seventh international colloquium of plant analysis and fertilizer problems. German Society for Plant Nutrition, Hannover

    Google Scholar 

  • Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133:307–318

    CAS  PubMed  Google Scholar 

  • Etherton B (1963) Relationship of cell transmembrane electropotential to potassium and sodium accumulation ratios in oat and pea seedlings. Plant Physiol 38:581–585

    CAS  PubMed  Google Scholar 

  • Farshidi M, Abdolazadeh A, Sadeghipour HR (2012) Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus L.) plants. Acta Physiol Plant 34:1779–1788

    CAS  Google Scholar 

  • Felle HH, Herrmann A, Hückelhoven R, Kogel KH (2005) Root-to-shoot signalling: apoplastic alkalinization, a general stress response and defence factor in barley (Hordeum vulgare). Protoplasma 227:17–24

    CAS  PubMed  Google Scholar 

  • Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM (1994) Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266:1068–1072

    CAS  PubMed  Google Scholar 

  • Flowers T, Colmer D (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    CAS  PubMed  Google Scholar 

  • Flowers TJ, Dalmond D (1992) Protein-synthesis in halophytes the influence of potassium, sodium and magnesium in vitro. Plant Soil 146:153–161

    CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA (2001) Salinity tolerance in Hordeum vulgare: ion concentrations in root cells of cultivars differing in salt tolerance. Plant Soil 231:1–9

    CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    CAS  PubMed  Google Scholar 

  • Fricke W, Leigh R, Tomos A (1994) Epidermal solute concentrations and osmolality in barley leaves studied at the single cell level. Changes along the leaf blade, during leaf ageing and NaCl stress. Planta 192:317–323

    CAS  Google Scholar 

  • Fricke W, Leigh RA, Tomos AD (1996) The intercellular distribution of vacuolar solutes in the epidermis and mesophyll of barley leaves changes in response to NaCl. J Exp Bot 47:1413–1426

    CAS  Google Scholar 

  • Fuchs I, Stölzle S, Ivashikina N, Hedrich R (2005) Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 221:212–221

    CAS  PubMed  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45:146–159

    CAS  PubMed  Google Scholar 

  • Gajdanowicz P, Michard E, Sandmann M, Rocha M, Correa LGG, Ramírez-Aguilar RJ, Gomez-Porras JL, González W, Thibaud J-B, van Dongen JT, Dreyer I (2011) Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc Natl Acad Sci U S A 108:864–869

    CAS  PubMed  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosyst 143:81–96

    Google Scholar 

  • Gaxiola RA, Li JS, Undurranga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants results from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci U S A 98:11444–11449

    CAS  PubMed  Google Scholar 

  • Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferriere N, Thibaud J-B, Sentenac H (1998) Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647–655

    CAS  PubMed  Google Scholar 

  • Genc Y, Mcdonald GK, Tester M (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ 30:1486–1498

    CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    CAS  PubMed  Google Scholar 

  • Gilliham M, Athman A, Tyerman SD, Conn SJ (2011) Cell-specific compartmentation of mineral nutrients is an essential mechanism for optimal plant productivity—another role for TPC1? Plant Signal Behav 6:1656–1661

    PubMed  Google Scholar 

  • Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJM (2006) Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a nonselective ion transporter involved in germination and cation transport. J Exp Bot 57:791–800

    CAS  PubMed  Google Scholar 

  • Gong HJ, Randall DP, Flowers T (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979

    CAS  PubMed  Google Scholar 

  • Guo KM, Babourina O, Christopher DA, Borsics T, Rengel Z (2008) The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. Physiol Plant 134:499–507

    CAS  PubMed  Google Scholar 

  • Hajibagheri MA, Harvey DMR, Flowers TJ (1987) Quantitative ion distribution within root-cells of salt-sensitive and salt-tolerant maize varieties. New Phytol 105:367–379

    CAS  Google Scholar 

  • Hamamoto S, Marui J, Matsuoka K, Higashi K, Igarashi K, Nakagawa T, Kuroda T, Mori Y, Murata Y, Nakanishi Y, Maeshima M, Yabe I, Uozumi N (2008) Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J Biol Chem 283:1911–1920

    CAS  PubMed  Google Scholar 

  • Hanfrey C, Sommer S, Mayer MJ, Burtin D, Michael AJ (2001) Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27:551–560

    CAS  PubMed  Google Scholar 

  • Higinbotham N, Etherton B, Foster RJ (1964) Effect of external K, NH4, Na, Ca, Mg, and H ions on the cell transmembrane electropotential of Avena coleoptile. Plant Physiol 39:196–203

    CAS  PubMed  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921

    CAS  PubMed  Google Scholar 

  • Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27:129–138

    CAS  PubMed  Google Scholar 

  • Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:3003–3014

    CAS  PubMed  Google Scholar 

  • Horie T, Hauesr F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668

    CAS  PubMed  Google Scholar 

  • Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice 5:11

    Google Scholar 

  • Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Porée F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci U S A 100:5549–5554

    CAS  PubMed  Google Scholar 

  • Hua BG, Mercier RW, Zielinski RE, Berkowitz GA (2003) Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem 41:11–12

    Google Scholar 

  • Hua J, Wang X, Zhai F, Yan F, Feng K (2008) Effects of NaCl and Ca2+ on membrane potential of epidermal cells of maize roots. Agric Sci China 7:291–296

    CAS  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic stress tolerance in plants. Biotechnol Adv 29:300–311

    CAS  PubMed  Google Scholar 

  • Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle HH, Hedrich R (2001) K+ channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett 508:463–469

    CAS  PubMed  Google Scholar 

  • Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil JL, Conéjéro G, Rodríguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C, Véry AA (2009) Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol 150:1955–1971

    CAS  PubMed  Google Scholar 

  • James RA, Munns R, von Caemmerer S, Trejo C, Miller C, Codon T (2006) Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+, and Cl in salt-affected barley and durum wheat. Plant Cell Environ 29:2185–2197

    CAS  PubMed  Google Scholar 

  • Johansson I, Wulfetange K, Porée F, Michard E, Gajdanowicz P, Lacombe B, Sentenac H, Thibaud JB, Mueller-Roeber B, Blatt MR, Dreyer I (2006) External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism. Plant J 46:269–281

    CAS  PubMed  Google Scholar 

  • Kader MA, Lindberg S (2005) Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice, Oryza sativa L. determined by the fluorescent dye SBFI. J Exp Bot 56:3149–3158

    CAS  PubMed  Google Scholar 

  • Karley AJ, Leigh RA, Sanders D (2000a) Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley. Plant Physiol 122:835–844

    CAS  PubMed  Google Scholar 

  • Karley AJ, Leigh RA, Sanders D (2000b) Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells. Trends Plant Sci 5:465–470

    CAS  PubMed  Google Scholar 

  • Kim SA, Kwak JM, Jae SK, Wang MH, Nam HG (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol 42:74–84

    CAS  PubMed  Google Scholar 

  • Köhler B, Hills A, Blatt MR (2003) Control of guard cell ion channels by hydrogen peroxide and abscisic acid indicates their action through alternate signaling pathways. Plant Physiol 131:385–388

    PubMed  Google Scholar 

  • Krol E, Dziubinska H, Trebacz K, Koselski M, Stolarz M (2007) The influence of glutamic and aminoacetic acids on the excitability of the liverwort Conocephalum conicum. J Plant Physiol 164:773–784

    CAS  PubMed  Google Scholar 

  • Kronzucker HJ, Britto DT (2011) Sodium transport in plants: a critical review. New Phytol 189:54–81

    CAS  PubMed  Google Scholar 

  • Kugler A, Köhler B, Palme K, Wolff P, Dietrich P (2009) Salt dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biol 9:140

    PubMed  Google Scholar 

  • Kukavica B, Mojović M, Vučinić Z, Maksimović V, Takahama U, Veljović Joanović S (2009) Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production. Plant Cell Physiol 50:304–317

    CAS  PubMed  Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007a) The polyamine spermine rescues Arabidopsis from salinity and drought stresses. Plant Signal Behav 2:251–252

    PubMed  Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007b) Advances in polyamine research in 2007. J Plant Res 120:345–350

    CAS  PubMed  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    CAS  PubMed  Google Scholar 

  • Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB (2000) A Shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12:837–851

    CAS  PubMed  Google Scholar 

  • Lan WZ, Wang W, Wang SM, Li LG, Buchanan BB, Lin HX, Gao JP, Luan S (2010) A rice high-affinity potassium transporter (HKT) conceals a calcium-permeable cation channel. Proc Natl Acad Sci U S A 107:7089–7094

    CAS  PubMed  Google Scholar 

  • Läuchli A, James RA, Huang CX, McCully M, Munns R (2008) Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant Cell Environ 31:1565–1574

    PubMed  Google Scholar 

  • Leigh RA, Ahmad N, Wyn Jones RG (1981) Assessment of glycinebetaine and proline compartmentation by analysis of isolated beet vacuoles. Planta 153:34–41

    CAS  PubMed  Google Scholar 

  • Lew RR (1991) Electrogenic transport properties of growing Arabidopsis root hairs. The plasma membrane proton pump and potassium channels. Plant Physiol 97:1527–1534

    CAS  PubMed  Google Scholar 

  • Lew RR, Spanswick RM (1984) Characterization of the electrogenicity of soybean (Glycine max L.) roots. ATP dependence and effect of ATPase inhibitors. Plant Physiol 75:1–6

    CAS  PubMed  Google Scholar 

  • Liszkay A, van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O2 •, H2O2 and •OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136:3114–3123

    CAS  PubMed  Google Scholar 

  • Liu K, Fu H, Bei Q, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1326

    CAS  PubMed  Google Scholar 

  • Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369

    CAS  PubMed  Google Scholar 

  • Lu Z, Ding L (1999) Blockade of a retinal cGMP-gated channel by polyamines. J Gen Physiol 113:35–43

    CAS  PubMed  Google Scholar 

  • Maathuis FJ (2004) Ligand-gated ion channels. In: Blatt MR (ed) Membrane transport in plants. Blackwell Publishing, Oxford, UK, pp 193–215

    Google Scholar 

  • Maathuis FJM, Prins HBA (1990) Patch clamp studies on root cell vacuoles of a salt-tolerant and a salt sensitive Plantago species. Regulation of channel activity by salt stress. Plant Physiol 92:23–28

    CAS  PubMed  Google Scholar 

  • Maathuis FJM, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625

    CAS  PubMed  Google Scholar 

  • Maathuis FJ, Filatov V, Herzyk P, Krijger GC, Axelsen KB, Chen S, Green BJ, Li Y, Madagan KL, Sánchez-Fernández R, Forde BP, Palmgren MG, Rea PA, Williams LE, Sanders D, Amtmann A (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J 35:675–692

    CAS  PubMed  Google Scholar 

  • Manetas Y (1989) A re-examination of NaCl effects on phosphoenolpyruvate carboxylase at high (physiological) enzyme concentrations. Physiol Plant 78:225–229

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, Hoshi T, Hedrich R (1999) AKT3, a phloem-localized K+ channel, is blocked by protons. Proc Natl Acad Sci U S A 96:7581–7586

    CAS  PubMed  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    PubMed  Google Scholar 

  • Mertz SM, Higinbotham N (1976) Transmembrane electropotential in barley roots as related to cell type, cell location, and cutting and aging effects. Plant Physiol 57:123–128

    CAS  PubMed  Google Scholar 

  • Michard E, Dreyer I, Lacombe B, Sentenac H, Thibaud JB (2005) Inward rectification of the AKT2 channel abolished by voltage-dependent phosphorylation. Plant J 44:783–797

    CAS  PubMed  Google Scholar 

  • Michard E, Lima PT, Borges F, Silva AC, Portes MT, Carvalho JE, Gilliham M, Liu LH, Obermeyer G, Feijó JA (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332:434–437

    CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    CAS  PubMed  Google Scholar 

  • Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178

    PubMed  Google Scholar 

  • Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008a) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724

    CAS  PubMed  Google Scholar 

  • Moschou PN, Paschalidis KA, Roubelakis-Angelakis KA (2008b) Plant polyamine catabolism: the state of the art. Plant Signal Behav 3:1061–1066

    PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Kasamo K, Shimosato N, Sakata M, Ohta E (1992) Stimulation of the extrusion of protons and H+-ATPase activities with the decline in pyrophosphatase activity of the tonoplast in intact mung bean roots under high-NaCl stress and its relation to external levels of Ca2+ ions. Plant Cell Physiol 33:139–149

    CAS  Google Scholar 

  • Nguyen VL, Ribot SA, Dolstra O, Niks RE, Visser RGF, van der Linden CG (2013) Identification of quantitative trait loci for ion homeostasis and salt tolerance in barley (Hordeum vulgare L.). Mol Breed 31:137–152

    CAS  Google Scholar 

  • Ober ES, Sharp RE (2003) Electrophysiological responses of maize roots to low water potentials: relationship to growth and ABA accumulation. J Exp Bot 54:813–824

    CAS  PubMed  Google Scholar 

  • Osmond CB, Greenway H (1972) Salt responses of carboxylation enzymes from species differing in salt tolerance. Plant Physiol 49:260–263

    CAS  PubMed  Google Scholar 

  • Pandolfi C, Pottosin I, Cuin T, Mancuso S, Shabala S (2010) Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants. Plant Cell Physiol 51:422–434

    CAS  PubMed  Google Scholar 

  • Papadakis AK, Roubelakis-Angelakis KA (2005) Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents programmed cell death induced by polyamine oxidase-generated hydrogen peroxide. Planta 230:826–837

    Google Scholar 

  • Pei Z, Murata Y, Benning G, Thomine S, Klüsener B, Allen G, Grill E, Schroeder J (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    CAS  PubMed  Google Scholar 

  • Perera LKRR, De Silva DLR, Mansfield TA (1997) Avoidance of sodium accumulation by the stomatal guard cells of the halophyte Aster tripolium. J Exp Bot 48:707–711

    CAS  Google Scholar 

  • Poór P, Szopkó D, Tari I (2012) Ionic homeostasis disturbance is involved in tomato cell death induced by NaCl and salicylic acid. In Vitro Cell Dev Biol Plant 48:377–382

    Google Scholar 

  • Pottosin II, Martínez-Estévez M (2003) Regulation of the fast vacuolar channel by cytosolic and vacuolar potassium. Biophys J 84:977–986

    CAS  PubMed  Google Scholar 

  • Pottosin II, Muñiz J (2002) Higher plant vacuolar ionic transport in the cellular context. Acta Bot Mex 60:37–77

    Google Scholar 

  • Pottosin II, Schönknecht G (2007) Vacuolar calcium channels. J Exp Bot 58:1559–1569

    CAS  PubMed  Google Scholar 

  • Pottosin II, Martínez-Estévez M, Dobrovinskaya OR, Muñiz J (2003) Potassium-selective channel in the red beet vacuolar membrane. J Exp Bot 54:663–667

    CAS  PubMed  Google Scholar 

  • Pottosin II, Martínez-Estévez M, Dobrovinskaya OR, Muñiz J (2005) Regulation of the slow vacuolar channel by luminal potassium: role of surface charge. J Membr Biol 205:103–111

    CAS  PubMed  Google Scholar 

  • Pottosin I, Wherrett T, Shabala S (2009) SV channels dominate the vacuolar Ca2+ release during intracellular signaling. FEBS Lett 583:921–926

    CAS  PubMed  Google Scholar 

  • Pottosin I, Velarde-Buendía AM, Zepeda-Jazo I, Dobrovinskaya O, Shabala S (2012) Synergism between polyamines and ROS in the induction of Ca2+ and K+ fluxes in roots. Plant Signal Behav 7:1084–1087

    CAS  PubMed  Google Scholar 

  • Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress. Plant Physiol 136:2548–2555

    CAS  PubMed  Google Scholar 

  • Raven JA (1997) The vacuole: a cost-benefit analysis. In: Leigh RA, Sanders D (eds) The plant vacuole, vol 25, Advances in botanical research. Elsevier-Academic Press, San Diego, pp 59–82

    Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    CAS  PubMed  Google Scholar 

  • Roberts SK, Snowman BN (2000) The effects of ABA on channel-mediated K+ transport across higher plant roots. J Exp Bot 51:1585–1594

    CAS  PubMed  Google Scholar 

  • Roberts SK, Tester M (1997) A patch clamp study of Na+ transport in maize roots. J Exp Bot 48:431–440

    CAS  PubMed  Google Scholar 

  • Robinson MF, Véry AA, Sanders D, Mansfield TA (1997) How can stomata contribute to salt tolerance. Ann Bot 80:387–393

    CAS  Google Scholar 

  • Rodrigo-Moreno A, Andrés-Colás N, Poschenrieder C, Gunsé B, Peñarrubia L, Shabala S (2013) Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: linking copper transport with cytosolic hydroxyl radical production. Plant Cell Environ 36:844–855

    CAS  PubMed  Google Scholar 

  • Rodríguez AA, Maiale SJ, Menéndez AB, Ruiz OA (2009) Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J Exp Bot 60:4249–4262

    PubMed  Google Scholar 

  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    CAS  PubMed  Google Scholar 

  • Rubio F, Flores P, Navarro JM, Martínez V (2003) Effects of Ca2+, K+ and cGMP on Na+ uptake in pepper plants. Plant Sci 165:1043–1049

    CAS  Google Scholar 

  • Sandmann M, Skłodowski K, Gajdanowicz P, Michard E, Rocha M, Gomez- Porras JL, González W, Guedes Correa LG, Ramírez-Aguilar SJ, Cuin TA, van Dongen JT, Thibaud JP, Dreyer I (2011) The K+ battery-regulating Arabidopsis K+ channel AKT2 is under the control of multiple post-translational steps. Plant Signal Behav 6:558–562

    CAS  PubMed  Google Scholar 

  • Sassi A, Mieulet D, Khan I, Moreau B, Gaillard I, Sentenac H, Véry AA (2012) The rice monovalent cation transporter OsHKT2;4: revisited ionic selectivity. Plant Physiol 160:498–510

    CAS  PubMed  Google Scholar 

  • Scholz-Starke J, Gambale F, Carpaneto A (2005) Modulation of plant ion channels by oxidizing and reducing agents. Arch Biochem Biophys 434:43–50

    CAS  PubMed  Google Scholar 

  • Schopfer P (2001) Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28:679–688

    CAS  PubMed  Google Scholar 

  • Shabala S (2000) Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant Cell Environ 23:825–837

    CAS  Google Scholar 

  • Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Exp Bot 60:709–712

    CAS  PubMed  Google Scholar 

  • Shabala S, Cuin TA (2007) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Google Scholar 

  • Shabala S, MacKay A (2011) Ion transport in halophytes. In: Turkan I (ed) Plant responses to drought and salinity stress: developments in a post-genomic era, vol 57, Advances in botanical research. Academic, San Diego, pp 151–199

    Google Scholar 

  • Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665

    CAS  PubMed  Google Scholar 

  • Shabala S, Cuin TA, Pottosin II (2007) Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Lett 581:1993–1999

    CAS  PubMed  Google Scholar 

  • Shabala S, Shabala L, Cuin TA, Pang J, Percey W, Chen Z, Conn S, Eing C, Wegner LH (2010) Xylem ionic relations and salinity tolerance in barley. Plant J 61:839–853

    CAS  PubMed  Google Scholar 

  • Shi H, Zhu JK (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol 50:543–550

    CAS  PubMed  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    CAS  PubMed  Google Scholar 

  • Spanswick RM (1981) Electrogenic ion pumps. Annu Rev Plant Physiol 32:267–289

    CAS  Google Scholar 

  • Stephens NR, Qi Z, Spalding EP (2008) Glutamate receptor subtypes evidenced by differences in desensitization and dependence on the GLR3.3 and GLR3.4 genes. Plant Physiol 146:529–538

    CAS  PubMed  Google Scholar 

  • Storey R, Wyn Jones RG (1977) Quaternary ammonium compounds in plants in relation to salt resistance. Phytochemistry 16:447–453

    CAS  Google Scholar 

  • Storey R, Pitman MG, Stelzer R, Carter C (1983a) X-ray micro-analysis of cells and cell components of Atriplex spongiosa. I. Leaves. J Exp Bot 34:778–794

    CAS  Google Scholar 

  • Storey R, Pitman M, Stelzer R (1983b) X-ray micro-analysis of cells and cell components of Atriplex spongiosa. II. Roots. J Exp Bot 34:1196–1206

    CAS  Google Scholar 

  • Su H, Balderas E, Vera-Estrella R, Goldack D, Quigley F, Zhao CS, Pantoja O, Bohnert HJ (2003) Expression of the cation transporter McHKT1 in a halophyte. Plant Mol Biol 52:967–980

    CAS  PubMed  Google Scholar 

  • Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z, Zhang Z, Song J, Xu Y (2009) NaCl-included alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol 149:1141–1153

    CAS  PubMed  Google Scholar 

  • Sunarpi HT, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938

    CAS  PubMed  Google Scholar 

  • Swanson S, Gilroy S (2010) ROS in plant development. Physiol Plant 138:384–392

    CAS  PubMed  Google Scholar 

  • Tapken D, Hollmann M (2008) Arabidopsis thaliana glutamate receptor ion channel function demonstrated by ion pore transplantation. J Mol Biol 383:36–48

    CAS  PubMed  Google Scholar 

  • Teakle NL, Tyerman SD (2010) Mechanisms of Cl transport contributing to salt tolerance. Plant Cell Environ 33:566–589

    CAS  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    CAS  PubMed  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375

    CAS  PubMed  Google Scholar 

  • Velarde-Buendía AM, Enríquez-Figueroa RA, Pottosin I (2012a) Patch-clamp protocols to study cell ionic homeostasis under saline conditions. In: Shabala S, Cuin T (eds) Methods in molecular biology, plants under salt stress. Humana Press-Springer, New York, pp 3–18

    Google Scholar 

  • Velarde-Buendía AM, Shabala S, Cvikrova M, Dobrovinskaya O, Pottosin I (2012b) Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines. Plant Physiol Biochem 61:18–23

    PubMed  Google Scholar 

  • Véry AA, Robinson MF, Mansfield TA, Sanders D (1998) Guard cell cation channels are involved in Na+-induced stomatal closure in a halophyte. Plant J 14:509–521

    Google Scholar 

  • Volkov V, Amtmann A (2006) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant J 48:342–353

    CAS  PubMed  Google Scholar 

  • Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A (2003) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant Cell Environ 27:1–14

    Google Scholar 

  • Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    CAS  PubMed  Google Scholar 

  • Wang B, Davenport RJ, Volkov V, Amtmann A (2006) Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. J Exp Bot 57:1161–1170

    CAS  PubMed  Google Scholar 

  • Ward JM, Schroeder JI (1994) Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 6:669–683

    CAS  PubMed  Google Scholar 

  • Ward JM, Mäser P, Schroeder JI (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Annu Rev Physiol 71:59–82

    CAS  PubMed  Google Scholar 

  • Wegner LH, De Boer AH (1997) Properties of two outward rectifying channels in root xylem parenchyma cells suggest a role in K+ homeostasis and long-distance signaling. Plant Physiol 115:1707–1719

    CAS  PubMed  Google Scholar 

  • Wegner LH, Raschke K (1994) Ion channels in the xylem parenchyma of barley roots. Procedure to isolate protoplasts from this tissue and a patch-clamp exploration of salt passage ways into xylem vessels. Plant Physiol 105:799–813

    CAS  PubMed  Google Scholar 

  • Wegner LH, Stefano G, Shabala L, Rossi M, Mancuso S, Shabala S (2011) Sequential depolarization of root cortical and stelar cells induced by an acute salt shock—implications for Na+ and K+ transport into xylem vessels. Plant Cell Environ 34:859–869

    CAS  PubMed  Google Scholar 

  • Williams K (1997) Interactions of polyamines with ion channels. Biochem J 385:289–297

    Google Scholar 

  • Wu G, Wang S (2012) Calcium regulates K+/Na+ homeostasis in rice (Oryza sativa L.) under saline conditions. Plant Soil Environ 58:121–127

    CAS  Google Scholar 

  • Xicluna J, Lacombe B, Dreyer I, Alcon C, Jeanguenin L, Sentenac H, Thibaud JB, Chérel I (2007) Increased functional diversity of plant K+ channels by preferential heteromerization of the Shaker-like subunits AKT2 and KAT2. J Biol Chem 282:486–494

    CAS  PubMed  Google Scholar 

  • Xue S, Yao X, Luo W, Jha D, Tester M, Horie T, Schroeder JI (2011) AtHKT1;1 mediates nernstian sodium channel transport properties in Arabidopsis root stelar cells. PLoS One 6:e24725

    CAS  PubMed  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Miyazaki A, Takahashi T, Michael A, Kusano T (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788

    CAS  PubMed  Google Scholar 

  • Yao X, Horie T, Xue SW, Leung HY, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI (2010) Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. Plant Physiol 152:341–351

    CAS  PubMed  Google Scholar 

  • Zepeda-Jazo I, Shabala S, Chen Z, Pottosin II (2008a) Na+-K+ transport in roots under salt stress. Plant Signal Behav 3:401–403

    PubMed  Google Scholar 

  • Zepeda-Jazo I, Velarde-Buendía AM, Dobrovinskaya OR, Muñiz J, Pottosin II (2008b) Polyamines as regulators of ionic transport in plants. Curr Top Plant Biol 9:87–99

    CAS  Google Scholar 

  • Zepeda-Jazo I, Velarde-Buendía AM, Enríquez-Figueroa R, Bose J, Shabala S, Muñiz-Murguía J, Pottosin II (2011) Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiol 157:2167–2180

    CAS  PubMed  Google Scholar 

  • Zhang JL, Flowers TJ, Wang SM (2010) Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326:45–60

    CAS  Google Scholar 

  • Zhao FG, Sun C, Liu YL, Zhang HW (2003) Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings. Acta Bot Sin 45:295–300

    CAS  Google Scholar 

  • Zhao F, Song CP, He J, Zhu H (2007) Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol 145:1061–1072

    CAS  PubMed  Google Scholar 

  • Zhu J (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    CAS  PubMed  Google Scholar 

  • Zhu H, Ding GH, Fang K, Zhao FG, Qin P (2006) New perspective on the mechanism of alleviating salt stress by spermidine in barley seedlings. Plant Growth Regul 49:147–156

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Prof. Shabala (University of Tasmania) for critical reading of the manuscript. Financial support from CONACyT (Mexico) and University of Tasmania is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Pottosin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pottosin, I., Velarde-Buendía, AM., Dobrovinskaya, O. (2014). Potassium and Sodium Transport Channels Under NaCl Stress. In: Ahmad, P., Wani, M. (eds) Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8600-8_12

Download citation

Publish with us

Policies and ethics