Skip to main content

Neurovascular Responses to Traumatic Brain Injury

  • Chapter
  • First Online:
Vascular Mechanisms in CNS Trauma

Abstract

The coordinated action of cells within the neurovascular unit is critical for proper brain functioning. Traumatic brain injury causes cell injury and death, resulting in disruptions of the intricate interactions among the surviving cells. Neurons, oligodendrocytes, astrocytes, microglia, endothelial cells, and pericytes exhibit specific responses to injury. An examination of these responses is important in understanding the pathology after brain trauma, and will be reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185

    PubMed  CAS  Google Scholar 

  2. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5(5):347–360

    PubMed  CAS  Google Scholar 

  3. Lo EH, Broderick JP, Moskowitz MA (2004) tPA and proteolysis in the neurovascular unit. Stroke 35(2):354–356

    PubMed  Google Scholar 

  4. Park JA, Choi KS, Kim SY, Kim KW (2003) Coordinated interaction of the vascular and nervous systems: from molecule- to cell-based approaches. Biochem Biophys Res Commun 311(2):247–253

    PubMed  CAS  Google Scholar 

  5. Blennow K, Hardy J, Zetterberg H (2012) The neuropathology and neurobiology of traumatic brain injury. Neuron 76(5):886–899

    PubMed  CAS  Google Scholar 

  6. Qiu J, Whalen MJ, Lowenstein P, Fiskum G, Fahy B, Darwish R et al (2002) Upregulation of the Fas receptor death-inducing signaling complex after traumatic brain injury in mice and humans. J Neurosci 22(9):3504–3511

    PubMed  CAS  Google Scholar 

  7. Bermpohl D, You Z, Korsmeyer SJ, Moskowitz MA, Whalen MJ (2006) Traumatic brain injury in mice deficient in Bid: effects on histopathology and functional outcome. J Cereb Blood Flow Metab 26(5):625–633

    PubMed  CAS  Google Scholar 

  8. Lewen A, Fujimura M, Sugawara T, Matz P, Copin JC, Chan PH (2001) Oxidative stress-dependent release of mitochondrial cytochrome c after traumatic brain injury. J Cereb Blood Flow Metab 21(8):914–920

    PubMed  CAS  Google Scholar 

  9. Tomura S, de Rivero Vaccari JP, Keane RW, Bramlett HM, Dietrich WD (2012) Effects of therapeutic hypothermia on inflammasome signaling after traumatic brain injury. J Cereb Blood Flow Metab 32(10):1939–1947

    PubMed  CAS  Google Scholar 

  10. Ji J, Kline AE, Amoscato A, Samhan-Arias AK, Sparvero LJ, Tyurin VA et al (2012) Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nat Neurosci 15(10):1407–1413

    PubMed  CAS  Google Scholar 

  11. You Z, Savitz SI, Yang J, Degterev A, Yuan J, Cuny GD et al (2008) Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab 28(9):1564–1573

    PubMed  CAS  Google Scholar 

  12. Diskin T, Tal-Or P, Erlich S, Mizrachy L, Alexandrovich A, Shohami E et al (2005) Closed head injury induces upregulation of Beclin 1 at the cortical site of injury. J Neurotrauma 22(7):750–762

    PubMed  Google Scholar 

  13. Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2007) Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis 26(1):86–93

    PubMed  CAS  Google Scholar 

  14. Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399(6738 Suppl):A7–A14

    PubMed  CAS  Google Scholar 

  15. Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1(6):383–386

    PubMed  CAS  Google Scholar 

  16. Morris GF, Bullock R, Marshall SB, Marmarou A, Maas A, Marshall LF (1999) Failure of the competitive N-methyl-D-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: results of two phase III clinical trials. The Selfotel Investigators. J Neurosurg 91(5):737–743

    PubMed  CAS  Google Scholar 

  17. Engel DC, Mies G, Terpolilli NA, Trabold R, Loch A, De Zeeuw CI et al (2008) Changes of cerebral blood flow during the secondary expansion of a cortical contusion assessed by 14C-iodoantipyrine autoradiography in mice using a non-invasive protocol. J Neurotrauma 25(7):739–753

    PubMed  Google Scholar 

  18. Schroder ML, Muizelaar JP, Fatouros PP, Kuta AJ, Choi SC (1998) Regional cerebral blood volume after severe head injury in patients with regional cerebral ischemia. Neurosurgery 42(6):1276–1280; discussion 80–1

    PubMed  CAS  Google Scholar 

  19. von Oettingen G, Bergholt B, Gyldensted C, Astrup J (2002) Blood flow and ischemia within traumatic cerebral contusions. Neurosurgery 50(4):781–788; discussion 8–90

    Google Scholar 

  20. Terpolilli NA, Kim SW, Thal SC, Kuebler WM, Plesnila N (2013) Inhaled nitric oxide reduces secondary brain damage after traumatic brain injury in mice. J Cereb Blood Flow Metab 33(2):311–318

    PubMed  CAS  Google Scholar 

  21. Bouma GJ, Muizelaar JP, Stringer WA, Choi SC, Fatouros P, Young HF (1992) Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg 77(3):360–368

    PubMed  CAS  Google Scholar 

  22. Sahuquillo J, Poca MA, Amoros S (2001) Current aspects of pathophysiology and cell dysfunction after severe head injury. Curr Pharm Des 7(15):1475–1503

    PubMed  CAS  Google Scholar 

  23. Nawashiro H, Shima K, Chigasaki H (1995) Selective vulnerability of hippocampal CA3 neurons to hypoxia after mild concussion in the rat. Neurol Res 17(6):455–460

    PubMed  CAS  Google Scholar 

  24. Dietrich WD, Alonso O, Halley M (1994) Early microvascular and neuronal consequences of traumatic brain injury: a light and electron microscopic study in rats. J Neurotrauma 11(3):289–301

    PubMed  CAS  Google Scholar 

  25. Anderson KJ, Miller KM, Fugaccia I, Scheff SW (2005) Regional distribution of fluoro-jade B staining in the hippocampus following traumatic brain injury. Exp Neurol 193(1):125–130

    PubMed  CAS  Google Scholar 

  26. Geddes DM, LaPlaca MC, Cargill RS II (2003) Susceptibility of hippocampal neurons to mechanically induced injury. Exp Neurol 184(1):420–427

    PubMed  CAS  Google Scholar 

  27. Toulmond S, Duval D, Serrano A, Scatton B, Benavides J (1993) Biochemical and histological alterations induced by fluid percussion brain injury in the rat. Brain Res 620(1):24–31

    PubMed  CAS  Google Scholar 

  28. Shimamura M, Garcia JM, Prough DS, Hellmich HL (2004) Laser capture microdissection and analysis of amplified antisense RNA from distinct cell populations of the young and aged rat brain: effect of traumatic brain injury on hippocampal gene expression. Brain Res Mol Brain Res 122(1):47–61

    PubMed  CAS  Google Scholar 

  29. Igarashi T, Potts MB, Noble-Haeusslein LJ (2007) Injury severity determines Purkinje cell loss and microglial activation in the cerebellum after cortical contusion injury. Exp Neurol 203(1):258–268

    PubMed  Google Scholar 

  30. Bell JD, Ai J, Chen Y, Baker AJ (2007) Mild in vitro trauma induces rapid Glur2 endocytosis, robustly augments calcium permeability and enhances susceptibility to secondary excitotoxic insult in cultured Purkinje cells. Brain 130(Pt 10):2528–2542

    PubMed  Google Scholar 

  31. Reeves TM, Smith TL, Williamson JC, Phillips LL (2012) Unmyelinated axons show selective rostrocaudal pathology in the corpus callosum after traumatic brain injury. J Neuropathol Exp Neurol 71(3):198–210

    PubMed  Google Scholar 

  32. Staal JA, Vickers JC (2011) Selective vulnerability of non-myelinated axons to stretch injury in an in vitro co-culture system. J Neurotrauma 28(5):841–847

    PubMed  Google Scholar 

  33. Guo S, Kim WJ, Lok J, Lee SR, Besancon E, Luo BH et al (2008) Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proc Natl Acad Sci U S A 105(21):7582–7587

    PubMed  CAS  Google Scholar 

  34. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81(2):871–927

    PubMed  CAS  Google Scholar 

  35. Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN et al (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283(5409):1908–1911

    PubMed  CAS  Google Scholar 

  36. Scholz J, Klein MC, Behrens TE, Johansen-Berg H (2009) Training induces changes in white-matter architecture. Nat Neurosci 12(11):1370–1371

    PubMed  CAS  Google Scholar 

  37. Juraska JM, Kopcik JR (1988) Sex and environmental influences on the size and ultrastructure of the rat corpus callosum. Brain Res 450(1–2):1–8

    PubMed  CAS  Google Scholar 

  38. Levine JM, Reynolds R, Fawcett JW (2001) The oligodendrocyte precursor cell in health and disease. Trends Neurosci 24(1):39–47

    PubMed  CAS  Google Scholar 

  39. Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosc 9(11):839–855

    CAS  Google Scholar 

  40. Emery B (2010) Regulation of oligodendrocyte differentiation and myelination. Science 330(6005):779–782

    PubMed  CAS  Google Scholar 

  41. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN et al (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408):443–448

    PubMed  CAS  Google Scholar 

  42. Wilkins A, Majed H, Layfield R, Compston A, Chandran S (2003) Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci 23(12):4967–4974

    PubMed  CAS  Google Scholar 

  43. Charles P, Hernandez MP, Stankoff B, Aigrot MS, Colin C, Rougon G et al (2000) Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc Natl Acad Sci U S A 97(13):7585–7590

    PubMed  CAS  Google Scholar 

  44. Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z et al (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 8(6):745–751

    PubMed  CAS  Google Scholar 

  45. Wang S, Sdrulla AD, diSibio G, Bush G, Nofziger D, Hicks C et al (1998) Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21(1):63–75

    PubMed  Google Scholar 

  46. Etxeberria A, Mangin JM, Aguirre A, Gallo V (2010) Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum. Nat Neurosci 13(3):287–289

    PubMed  CAS  Google Scholar 

  47. Arai K, Lo EH (2009) An oligovascular niche: cerebral endothelial cells promote the survival and proliferation of oligodendrocyte precursor cells. J Neurosci 29(14):4351–4355

    PubMed  CAS  Google Scholar 

  48. Arai K, Lo EH (2009) Oligovascular signaling in white matter stroke. Biol Pharm Bull 32(10):1639–1644

    PubMed  CAS  Google Scholar 

  49. Pham LD, Hayakawa K, Seo JH, Nguyen MN, Som AT, Lee BJ et al (2012) Crosstalk between oligodendrocytes and cerebral endothelium contributes to vascular remodeling after white matter injury. Glia 60(6):875–881

    PubMed  Google Scholar 

  50. Bramlett HM, Dietrich WD (2002) Quantitative structural changes in white and gray matter 1 year following traumatic brain injury in rats. Acta Neuropathol 103(6):607–614

    PubMed  Google Scholar 

  51. Flygt J, Djupsjo A, Lenne F, Marklund N (2013) Myelin loss and oligodendrocyte pathology in white matter tracts following traumatic brain injury in the rat. Eur J Neurosci 38:2153–2165

    PubMed  CAS  Google Scholar 

  52. Lotocki G, de Rivero VJ, Alonso O, Molano JS, Nixon R, Dietrich WD et al (2011) Oligodendrocyte vulnerability following traumatic brain injury in rats: effect of moderate hypothermia. Ther Hypothermia Temp Manag 1(1):43–51

    PubMed  Google Scholar 

  53. Lotocki G, de Rivero Vaccari JP, Alonso O, Molano JS, Nixon R, Safavi P et al (2011) Oligodendrocyte vulnerability following traumatic brain injury in rats. Neurosci Lett 499(3):143–148

    PubMed  CAS  Google Scholar 

  54. Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT et al (2008) Classification of traumatic brain injury for targeted therapies. J Neurotrauma 25(7):719–738

    PubMed  Google Scholar 

  55. Davenport ND, Lim KO, Armstrong MT, Sponheim SR (2012) Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage 59(3):2017–2024

    PubMed  Google Scholar 

  56. Anderson CV, Bigler ED (1995) Ventricular dilation, cortical atrophy, and neuropsychological outcome following traumatic brain injury. J Neuropsychiatry Clin Neurosci 7(1):42–48

    PubMed  CAS  Google Scholar 

  57. Cullum CM, Bigler ED (1986) Ventricle size, cortical atrophy and the relationship with neuropsychological status in closed head injury: a quantitative analysis. J Clin Exp Neuropsychol 8(4):437–452

    PubMed  CAS  Google Scholar 

  58. Kinnunen KM, Greenwood R, Powell JH, Leech R, Hawkins PC, Bonnelle V et al (2011) White matter damage and cognitive impairment after traumatic brain injury. Brain 134(Pt 2):449–463

    PubMed  Google Scholar 

  59. Anderson CV, Bigler ED (1994) The role of caudate nucleus and corpus callosum atrophy in trauma-induced anterior horn dilation. Brain Inj 8(6):565–569

    PubMed  CAS  Google Scholar 

  60. Barclay L, Zemcov A, Reichert W, Blass JP (1985) Cerebral blood flow decrements in chronic head injury syndrome. Biol Psychiatry 20(2):146–157

    PubMed  CAS  Google Scholar 

  61. Bramlett HM, Dietrich WD, Green EJ, Busto R (1997) Chronic histopathological consequences of fluid-percussion brain injury in rats: effects of post-traumatic hypothermia. Acta Neuropathol 93(2):190–199

    PubMed  CAS  Google Scholar 

  62. Terayama Y, Meyer JS, Kawamura J, Weathers S (1991) Role of thalamus and white matter in cognitive outcome after head injury. J Cereb Blood Flow Metab 11(5):852–860

    PubMed  CAS  Google Scholar 

  63. Bramlett HM, Dietrich WD (2007) Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Prog Brain Res 161:125–141

    PubMed  Google Scholar 

  64. Moretti L, Cristofori I, Weaver SM, Chau A, Portelli JN, Grafman J (2012) Cognitive decline in older adults with a history of traumatic brain injury. Lancet Neurol 11(12):1103–1112

    PubMed  Google Scholar 

  65. Palacios EM, Sala-Llonch R, Junque C, Roig T, Tormos JM, Bargallo N et al (2012) White matter integrity related to functional working memory networks in traumatic brain injury. Neurology 78(12):852–860

    PubMed  CAS  Google Scholar 

  66. Wang JY, Bakhadirov K, Abdi H, Devous MD Sr, Marquez de la Plata CD, Moore C et al (2011) Longitudinal changes of structural connectivity in traumatic axonal injury. Neurology 77(9):818–826

    PubMed  CAS  Google Scholar 

  67. Reider-Groswasser I, Cohen M, Costeff H, Groswasser Z (1993) Late CT findings in brain trauma: relationship to cognitive and behavioral sequelae and to vocational outcome. AJR Am J Roentgenol 160(1):147–152

    PubMed  CAS  Google Scholar 

  68. Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60(3):430–440

    PubMed  CAS  Google Scholar 

  69. Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A et al (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120(3):421–433

    PubMed  CAS  Google Scholar 

  70. Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A et al (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294(5545):1354–1357

    PubMed  CAS  Google Scholar 

  71. Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ et al (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486(7403):410–414

    PubMed  CAS  Google Scholar 

  72. Pfrieger FW, Barres BA (1997) Synaptic efficacy enhanced by glial cells in vitro. Science 277(5332):1684–1687

    PubMed  CAS  Google Scholar 

  73. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10(11):1369–1376

    PubMed  CAS  Google Scholar 

  74. Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468(7321):223–231

    PubMed  CAS  Google Scholar 

  75. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN et al (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23(2):297–308

    PubMed  CAS  Google Scholar 

  76. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN et al (2012) Astrocyte-derived VEGF-A drives blood–brain barrier disruption in CNS inflammatory disease. J Clin Invest 122(7):2454–2468

    PubMed  CAS  Google Scholar 

  77. Arai K, Lo EH (2010) Astrocytes protect oligodendrocyte precursor cells via MEK/ERK and PI3K/Akt signaling. J Neurosci Res 88(4):758–763

    PubMed  CAS  Google Scholar 

  78. Moore CS, Abdullah SL, Brown A, Arulpragasam A, Crocker SJ (2011) How factors secreted from astrocytes impact myelin repair. J Neurosci Res 89(1):13–21

    PubMed  CAS  Google Scholar 

  79. Ricci G, Volpi L, Pasquali L, Petrozzi L, Siciliano G (2009) Astrocyte-neuron interactions in neurological disorders. J Biol Phys 35(4):317–336

    PubMed  CAS  Google Scholar 

  80. Hayakawa K, Pham LD, Katusic ZS, Arai K, Lo EH (2012) Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery. Proc Natl Acad Sci U S A 109(19):7505–7510

    PubMed  CAS  Google Scholar 

  81. Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11(2):87–99

    PubMed  CAS  Google Scholar 

  82. Chew SS, Johnson CS, Green CR, Danesh-Meyer HV (2010) Role of connexin43 in central nervous system injury. Exp Neurol 225(2):250–261

    PubMed  CAS  Google Scholar 

  83. Cortez SC, McIntosh TK, Noble LJ (1989) Experimental fluid percussion brain injury: vascular disruption and neuronal and glial alterations. Brain Res 482(2):271–282

    PubMed  CAS  Google Scholar 

  84. Hill SJ, Barbarese E, McIntosh TK (1996) Regional heterogeneity in the response of astrocytes following traumatic brain injury in the adult rat. J Neuropathol Exp Neurol 55(12):1221–1229

    PubMed  CAS  Google Scholar 

  85. Dietrich WD, Truettner J, Zhao W, Alonso OF, Busto R, Ginsberg MD (1999) Sequential changes in glial fibrillary acidic protein and gene expression following parasagittal fluid-percussion brain injury in rats. J Neurotrauma 16(7):567–581

    PubMed  CAS  Google Scholar 

  86. Castejon OJ (1998) Morphological astrocytic changes in complicated human brain trauma. A light and electron microscopic study. Brain Inj 12(5):409–427; discussion 7

    PubMed  CAS  Google Scholar 

  87. Baldwin SA, Scheff SW (1996) Intermediate filament change in astrocytes following mild cortical contusion. Glia 16(3):266–275

    PubMed  CAS  Google Scholar 

  88. Amaducci L, Forno KI, Eng LF (1981) Glial fibrillary acidic protein in cryogenic lesions of the rat brain. Neurosci Lett 21(1):27–32

    PubMed  CAS  Google Scholar 

  89. Pelinka LE, Toegel E, Mauritz W, Redl H (2003) Serum S 100 B: a marker of brain damage in traumatic brain injury with and without multiple trauma. Shock 19(3):195–200

    PubMed  CAS  Google Scholar 

  90. Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H (2004) GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma 21(11):1553–1561

    PubMed  Google Scholar 

  91. Hayakata T, Shiozaki T, Tasaki O, Ikegawa H, Inoue Y, Toshiyuki F et al (2004) Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock 22(2):102–107

    PubMed  CAS  Google Scholar 

  92. Pelinka LE, Kroepfl A, Schmidhammer R, Krenn M, Buchinger W, Redl H et al (2004) Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. J Trauma 57(5):1006–1012

    PubMed  CAS  Google Scholar 

  93. Zhang D, Hu X, Qian L, O’Callaghan JP, Hong JS (2010) Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 41(2–3):232–241

    PubMed  Google Scholar 

  94. Laird MD, Vender JR, Dhandapani KM (2008) Opposing roles for reactive astrocytes following traumatic brain injury. Neurosignals 16(2–3):154–164

    PubMed  CAS  Google Scholar 

  95. Rao VL, Baskaya MK, Dogan A, Rothstein JD, Dempsey RJ (1998) Traumatic brain injury down-regulates glial glutamate transporter (GLT-1 and GLAST) proteins in rat brain. J Neurochem 70(5):2020–2027

    PubMed  CAS  Google Scholar 

  96. Beschorner R, Dietz K, Schauer N, Mittelbronn M, Schluesener HJ, Trautmann K et al (2007) Expression of EAAT1 reflects a possible neuroprotective function of reactive astrocytes and activated microglia following human traumatic brain injury. Histol Histopathol 22(5):515–526

    PubMed  CAS  Google Scholar 

  97. Wu H, Mahmood A, Lu D, Jiang H, Xiong Y, Zhou D et al (2010) Attenuation of astrogliosis and modulation of endothelial growth factor receptor in lipid rafts by simvastatin after traumatic brain injury. J Neurosurg 113(3):591–597

    PubMed  CAS  Google Scholar 

  98. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53

    PubMed  CAS  Google Scholar 

  99. Xin H, Li Y, Shen LH, Liu X, Wang X, Zhang J et al (2010) Increasing tPA activity in astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse. PLoS One 5(2):e9027

    PubMed  Google Scholar 

  100. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24(9):2143–2155

    PubMed  CAS  Google Scholar 

  101. Cui W, Allen ND, Skynner M, Gusterson B, Clark AJ (2001) Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia 34(4):272–282

    PubMed  CAS  Google Scholar 

  102. Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV (2006) Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 129(Pt 10):2761–2772

    PubMed  CAS  Google Scholar 

  103. Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20(5):588–594

    PubMed  CAS  Google Scholar 

  104. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278

    PubMed  CAS  Google Scholar 

  105. Takata N, Hirase H (2008) Cortical layer 1 and layer 2/3 astrocytes exhibit distinct calcium dynamics in vivo. PLoS One 3(6):e2525

    PubMed  Google Scholar 

  106. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG et al (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32(18):6391–6410

    PubMed  CAS  Google Scholar 

  107. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    PubMed  CAS  Google Scholar 

  108. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318

    PubMed  CAS  Google Scholar 

  109. Kettenmann H, Verkhratsky A (2008) Neuroglia: the 150 years after. Trends Neurosci 31(12):653–659

    PubMed  CAS  Google Scholar 

  110. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    PubMed  CAS  Google Scholar 

  111. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    PubMed  CAS  Google Scholar 

  112. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980

    PubMed  CAS  Google Scholar 

  113. Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119(1):89–105

    PubMed  Google Scholar 

  114. Rochefort N, Quenech’du N, Watroba L, Mallat M, Giaume C, Milleret C (2002) Microglia and astrocytes may participate in the shaping of visual callosal projections during postnatal development. J Physiol Paris 96(3–4):183–192

    PubMed  CAS  Google Scholar 

  115. Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S (2006) Potential role of microglia in retinal blood vessel formation. Invest Ophthalmol Vis Sci 47(8):3595–3602

    PubMed  Google Scholar 

  116. Caldero J, Brunet N, Ciutat D, Hereu M, Esquerda JE (2009) Development of microglia in the chick embryo spinal cord: implications in the regulation of motoneuronal survival and death. J Neurosci Res 87(11):2447–2466

    PubMed  CAS  Google Scholar 

  117. Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158(3):1021–1029

    PubMed  CAS  Google Scholar 

  118. Battista D, Ferrari CC, Gage FH, Pitossi FJ (2006) Neurogenic niche modulation by activated microglia: transforming growth factor beta increases neurogenesis in the adult dentate gyrus. Eur J Neurosci 23(1):83–93

    PubMed  Google Scholar 

  119. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N et al (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9(2):268–275

    PubMed  CAS  Google Scholar 

  120. Thored P, Heldmann U, Gomes-Leal W, Gisler R, Darsalia V, Taneera J et al (2009) Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 57(8):835–849

    PubMed  Google Scholar 

  121. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    PubMed  CAS  Google Scholar 

  122. Ransohoff RM, Cardona AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468(7321):253–262

    PubMed  CAS  Google Scholar 

  123. Polazzi E, Monti B (2010) Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 92(3):293–315

    PubMed  Google Scholar 

  124. Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181(6):3733–3739

    PubMed  CAS  Google Scholar 

  125. Geissmann F, Auffray C, Palframan R, Wirrig C, Ciocca A, Campisi L et al (2008) Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol Cell Biol 86(5):398–408

    PubMed  CAS  Google Scholar 

  126. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686

    PubMed  CAS  Google Scholar 

  127. Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P (2009) Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol 210(1–2):3–12

    PubMed  CAS  Google Scholar 

  128. Narantuya D, Nagai A, Sheikh AM, Masuda J, Kobayashi S, Yamaguchi S et al (2010) Human microglia transplanted in rat focal ischemia brain induce neuroprotection and behavioral improvement. PLoS One 5(7):e11746

    PubMed  Google Scholar 

  129. Merson TD, Binder MD, Kilpatrick TJ (2010) Role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination of the CNS. Neuromolecular Med 12(2):99–132

    PubMed  CAS  Google Scholar 

  130. Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27(10):2596–2605

    PubMed  CAS  Google Scholar 

  131. Kiefer R, Streit WJ, Toyka KV, Kreutzberg GW, Hartung HP (1995) Transforming growth factor-beta 1: a lesion-associated cytokine of the nervous system. Int J Dev Neurosci 13(3–4):331–339

    PubMed  CAS  Google Scholar 

  132. Streit WJ, Xue QS (2009) Life and death of microglia. J Neuroimmune Pharmacol 4(4):371–379

    PubMed  Google Scholar 

  133. Harry GJ, McPherson CA, Wine RN, Atkinson K, Lefebvre d’Hellencourt C (2004) Trimethyltin-induced neurogenesis in the murine hippocampus. Neurotox Res 5(8):623–627

    PubMed  Google Scholar 

  134. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40(2):133–139

    PubMed  Google Scholar 

  135. Walton NM, Sutter BM, Laywell ED, Levkoff LH, Kearns SM, Marshall GP II et al (2006) Microglia instruct subventricular zone neurogenesis. Glia 54(8):815–825

    PubMed  Google Scholar 

  136. Carlson SL, Parrish ME, Springer JE, Doty K, Dossett L (1998) Acute inflammatory response in spinal cord following impact injury. Exp Neurol. [Research Support, Non-U.S. Gov’t]. 151(1):77–88

    Google Scholar 

  137. Popovich PG, Wei P, Stokes BT (1997) Cellular inflammatory response after spinal cord injury in Sprague–Dawley and Lewis rats. J Comp Neurol. [Research Support, Non-U.S. Gov’t, P.H.S.]. 377(3):443–464

    Google Scholar 

  138. Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ (2010) Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain. [Comparative Study Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov’t, Research Support, U.S. Gov’t, Non-P.H.S.]. 133(Pt 2):433–447

    Google Scholar 

  139. Csuka E, Hans VH, Ammann E, Trentz O, Kossmann T, Morganti-Kossmann MC (2000) Cell activation and inflammatory response following traumatic axonal injury in the rat. Neuroreport. [Research Support, Non-U.S. Gov’t]. 11(11):2587–2590

    Google Scholar 

  140. Maeda J, Higuchi M, Inaji M, Ji B, Haneda E, Okauchi T, et al (2007) Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor. Brain Res. [Research Support, Non-U.S. Gov’t]. 1157:100–111

    Google Scholar 

  141. Raghavendra Rao VL, Dogan A, Bowen KK, Dempsey RJ (2000) Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Exp Neurol. [Research Support, Non-U.S. Gov’t, Research Support, U.S. Gov’t, P.H.S.]. 161(1):102–114

    Google Scholar 

  142. Koshinaga M, Katayama Y, Fukushima M, Oshima H, Suma T, Takahata T (2000) Rapid and widespread microglial activation induced by traumatic brain injury in rat brain slices. J Neurotrauma. [In Vitro Research Support, Non-U.S. Gov’t]. 17(3):185–192

    Google Scholar 

  143. Holmin S, Mathiesen T (1999) Long-term intracerebral inflammatory response after experimental focal brain injury in rat. Neuroreport. [Research Support, Non-U.S. Gov’t]. 10(9):1889–1891

    Google Scholar 

  144. Engel S, Schluesener H, Mittelbronn M, Seid K, Adjodah D, Wehner HD et al (2000) Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathol 100(3):313–322

    PubMed  CAS  Google Scholar 

  145. Beschorner R, Nguyen TD, Gozalan F, Pedal I, Mattern R, Schluesener HJ, et al (2002) CD14 expression by activated parenchymal microglia/macrophages and infiltrating monocytes following human traumatic brain injury. Acta Neuropathol. [Research Support, Non-U.S. Gov’t]. 103(6):541–549

    Google Scholar 

  146. Gentleman SM, Leclercq PD, Moyes L, Graham DI, Smith C, Griffin WS, et al (2004) Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci Int. [Research Support, N.I.H., Extramural]. 146(2–3):97–104

    Google Scholar 

  147. Maxwell WL, MacKinnon MA, Stewart JE, Graham DI (2010) Stereology of cerebral cortex after traumatic brain injury matched to the Glasgow outcome score. Brain. [Comparative Study]. 133(Pt 1):139–160

    Google Scholar 

  148. Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, et al (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol. [Research Support, Non-U.S. Gov’t]. 70(3):374–383

    Google Scholar 

  149. Morganti-Kossmann MC, Satgunaseelan L, Bye N, Kossmann T (2007) Modulation of immune response by head injury. Injury. [Research Support, Non-U.S. Gov’t Review]. 38(12):1392–1400

    Google Scholar 

  150. Dietrich WD, Chatzipanteli K, Vitarbo E, Wada K, Kinoshita K (2004) The role of inflammatory processes in the pathophysiology and treatment of brain and spinal cord trauma. Acta Neurochir Suppl. [Research Support, U.S. Gov’t, P.H.S.]. 89:69–74

    Google Scholar 

  151. Morganti-Kossmann MC, Rancan M, Otto VI, Stahel PF, Kossmann T (2001) Role of cerebral inflammation after traumatic brain injury: a revisited concept. Shock. [Research Support, Non-U.S. Gov’t Review]. 16(3):165–177

    Google Scholar 

  152. Zhang B, West EJ, Van KC, Gurkoff GG, Zhou J, Zhang XM, et al (2008) HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res. [Research Support, N.I.H., Extramural]. 1226:181–191

    Google Scholar 

  153. Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, et al (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med. [Research Support, Non-U.S. Gov’t]. 6(7):e1000113

    Google Scholar 

  154. Horn KP, Busch SA, Hawthorne AL, van Rooijen N, Silver J (2008) Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. J Neurosci. [Research Support, N.I.H., Extramural]. 28(38):9330–9341

    Google Scholar 

  155. Urrea C, Castellanos DA, Sagen J, Tsoulfas P, Bramlett HM, Dietrich WD (2007) Widespread cellular proliferation and focal neurogenesis after traumatic brain injury in the rat. Restor Neurol Neurosci. [Research Support, N.I.H., Extramural]. 25(1):65–76

    Google Scholar 

  156. Olah M, Ping G, De Haas AH, Brouwer N, Meerlo P, Van Der Zee EA et al (2009) Enhanced hippocampal neurogenesis in the absence of microglia T cell interaction and microglia activation in the murine running wheel model. Glia 57(10):1046–1061

    PubMed  Google Scholar 

  157. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. [Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov’t]. 29(43):13435–13444

    Google Scholar 

  158. Lenzlinger PM, Marx A, Trentz O, Kossmann T, Morganti-Kossmann MC (2002) Prolonged intrathecal release of soluble Fas following severe traumatic brain injury in humans. J Neuroimmunol 122(1–2):167–174

    PubMed  CAS  Google Scholar 

  159. Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T (2002) Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care 8(2):101–105

    PubMed  Google Scholar 

  160. Hong Y, Yan W, Chen S, Sun CR, Zhang JM (2010) The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol Sin 31(11):1421–1430

    PubMed  CAS  Google Scholar 

  161. Armin SS, Colohan AR, Zhang JH (2006) Traumatic subarachnoid hemorrhage: our current understanding and its evolution over the past half century. Neurol Res 28(4):445–452

    PubMed  Google Scholar 

  162. Armin SS, Colohan AR, Zhang JH (2008) Vasospasm in traumatic brain injury. Acta Neurochir Suppl 104(13):421–425

    PubMed  Google Scholar 

  163. Schwarzmaier SM, Kim SW, Trabold R, Plesnila N (2010) Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma 27(1):121–130

    PubMed  Google Scholar 

  164. Zink BJ, Szmydynger-Chodobska J, Chodobski A (2010) Emerging concepts in the pathophysiology of traumatic brain injury. Psychiatr Clin North Am 33(4):741–756

    PubMed  Google Scholar 

  165. Chodobski A, Zink BJ, Szmydynger-Chodobska J (2011) Blood–brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2(4):492–516

    PubMed  CAS  Google Scholar 

  166. Chang EF, Claus CP, Vreman HJ, Wong RJ, Noble-Haeusslein LJ (2005) Heme regulation in traumatic brain injury: relevance to the adult and developing brain. J Cereb Blood Flow Metab 25(11):1401–1417

    PubMed  CAS  Google Scholar 

  167. Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF (2003) Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab 23(6):629–652

    PubMed  CAS  Google Scholar 

  168. Aoyama N, Lee SM, Moro N, Hovda DA, Sutton RL (2008) Duration of ATP reduction affects extent of CA1 cell death in rat models of fluid percussion injury combined with secondary ischemia. Brain Res 1230:310–319

    PubMed  CAS  Google Scholar 

  169. Kurland D, Hong C, Aarabi B, Gerzanich V, Simard JM (2012) Hemorrhagic progression of a contusion after traumatic brain injury: a review. J Neurotrauma 29(1):19–31

    PubMed  Google Scholar 

  170. Whalen MJ, Carlos TM, Dixon CE, Robichaud P, Clark RS, Marion DW et al (2000) Reduced brain edema after traumatic brain injury in mice deficient in P-selectin and intercellular adhesion molecule-1. J Leukoc Biol 67(2):160–168

    PubMed  CAS  Google Scholar 

  171. Whalen MJ, Carlos TM, Dixon CE, Schiding JK, Clark RS, Baum E et al (1999) Effect of traumatic brain injury in mice deficient in intercellular adhesion molecule-1: assessment of histopathologic and functional outcome. J Neurotrauma 16(4):299–309

    PubMed  CAS  Google Scholar 

  172. McKeating EG, Andrews PJ, Mascia L (1998) Leukocyte adhesion molecule profiles and outcome after traumatic brain injury. Acta Neurochir Suppl 71:200–202

    PubMed  CAS  Google Scholar 

  173. Hartl R, Medary MB, Ruge M, Arfors KE, Ghajar J (1997) Early white blood cell dynamics after traumatic brain injury: effects on the cerebral microcirculation. J Cereb Blood Flow Metab 17(11):1210–1220

    PubMed  CAS  Google Scholar 

  174. Schoettle RJ, Kochanek PM, Magargee MJ, Uhl MW, Nemoto EM (1990) Early polymorphonuclear leukocyte accumulation correlates with the development of posttraumatic cerebral edema in rats. J Neurotrauma 7(4):207–217

    PubMed  CAS  Google Scholar 

  175. Szmydynger-Chodobska J, Strazielle N, Zink BJ, Ghersi-Egea JF, Chodobski A (2009) The role of the choroid plexus in neutrophil invasion after traumatic brain injury. J Cereb Blood Flow Metab 29(9):1503–1516

    PubMed  CAS  Google Scholar 

  176. Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol 429:47–62

    PubMed  CAS  Google Scholar 

  177. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37(1):13–25

    PubMed  CAS  Google Scholar 

  178. Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201

    PubMed  CAS  Google Scholar 

  179. Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6(7):393–403

    PubMed  CAS  Google Scholar 

  180. Rosenberg GA (2012) Neurological diseases in relation to the blood–brain barrier. J Cereb Blood Flow Metab 32(7):1139–1151

    PubMed  CAS  Google Scholar 

  181. Tomkins O, Feintuch A, Benifla M, Cohen A, Friedman A, Shelef I (2011) Blood–brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychiatry Neurol 2011:765923

    PubMed  Google Scholar 

  182. Pun PB, Lu J, Moochhala S (2009) Involvement of ROS in BBB dysfunction. Free Radic Res 43(4):348–364

    PubMed  CAS  Google Scholar 

  183. Adelson PD, Whalen MJ, Kochanek PM, Robichaud P, Carlos TM (1998) Blood brain barrier permeability and acute inflammation in two models of traumatic brain injury in the immature rat: a preliminary report. Acta Neurochir Suppl 71:104–106

    PubMed  CAS  Google Scholar 

  184. Baskaya MK, Rao AM, Dogan A, Donaldson D, Dempsey RJ (1997) The biphasic opening of the blood–brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 226(1):33–36

    PubMed  CAS  Google Scholar 

  185. Shapira Y, Setton D, Artru AA, Shohami E (1993) Blood–brain barrier permeability, cerebral edema, and neurologic function after closed head injury in rats. Anesth Analg 77(1):141–148

    PubMed  CAS  Google Scholar 

  186. Aihara N, Hall JJ, Pitts LH, Fukuda K, Noble LJ (1995) Altered immunoexpression of microglia and macrophages after mild head injury. J Neurotrauma 12(1):53–63

    PubMed  CAS  Google Scholar 

  187. Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV (2006) Inflammation and brain edema: new insights into the role of chemokines and their receptors. Acta Neurochir Suppl 96:444–450

    PubMed  CAS  Google Scholar 

  188. Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U et al (2004) Lasting blood–brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci 24(36):7829–7836

    PubMed  CAS  Google Scholar 

  189. Suehiro E, Fujisawa H, Akimura T, Ishihara H, Kajiwara K, Kato S et al (2004) Increased matrix metalloproteinase-9 in blood in association with activation of interleukin-6 after traumatic brain injury: influence of hypothermic therapy. J Neurotrauma 21(12):1706–1711

    PubMed  Google Scholar 

  190. Rigor RR, Beard RS Jr, Litovka OP, Yuan SY (2012) Interleukin-1beta-induced barrier dysfunction is signaled through PKC-theta in human brain microvascular endothelium. Am J Physiol Cell Physiol 302(10):C1513–C1522

    PubMed  CAS  Google Scholar 

  191. Puhlmann M, Weinreich DM, Farma JM, Carroll NM, Turner EM, Alexander HR Jr (2005) Interleukin-1beta induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity. J Transl Med 3:37

    PubMed  Google Scholar 

  192. Aslam M, Schluter KD, Rohrbach S, Rafiq A, Nazli S, Piper HM et al (2013) Hypoxia-reoxygenation-induced endothelial barrier failure: role of RhoA, Rac1 and myosin light chain kinase. J Physiol 591(Pt 2):461–473

    PubMed  CAS  Google Scholar 

  193. Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR (2009) VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown. Proc Natl Acad Sci U S A 106(6):1977–1982

    PubMed  CAS  Google Scholar 

  194. Mori T, Wang X, Kline AE, Siao CJ, Dixon CE, Tsirka SE et al (2001) Reduced cortical injury and edema in tissue plasminogen activator knockout mice after brain trauma. Neuroreport 12(18):4117–4120

    PubMed  CAS  Google Scholar 

  195. Simard JM, Kahle KT, Gerzanich V (2010) Molecular mechanisms of microvascular failure in central nervous system injury—synergistic roles of NKCC1 and SUR1/TRPM4. J Neurosurg 113(3):622–629

    PubMed  CAS  Google Scholar 

  196. Foroutan S, Brillault J, Forbush B, O’Donnell ME (2005) Moderate-to-severe ischemic conditions increase activity and phosphorylation of the cerebral microvascular endothelial cell Na+−K+−Cl- cotransporter. Am J Physiol Cell Physiol 289(6):C1492–C1501

    PubMed  CAS  Google Scholar 

  197. O’Donnell ME, Lam TI, Tran L, Anderson SE (2004) The role of the blood–brain barrier Na-K-2Cl cotransporter in stroke. Adv Exp Med Biol 559:67–75

    PubMed  Google Scholar 

  198. O’Donnell ME, Lam TI, Tran LQ, Foroutan S, Anderson SE (2006) Estradiol reduces activity of the blood–brain barrier Na-K-Cl cotransporter and decreases edema formation in permanent middle cerebral artery occlusion. J Cereb Blood Flow Metab 26(10):1234–1249

    PubMed  Google Scholar 

  199. O’Donnell ME, Tran L, Lam TI, Liu XB, Anderson SE (2004) Bumetanide inhibition of the blood–brain barrier Na-K-Cl cotransporter reduces edema formation in the rat middle cerebral artery occlusion model of stroke. J Cereb Blood Flow Metab 24(9):1046–1056

    PubMed  Google Scholar 

  200. Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L et al (2009) Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab 29(2):317–330

    PubMed  CAS  Google Scholar 

  201. Simard JM, Tsymbalyuk O, Ivanov A, Ivanova S, Bhatta S, Geng Z et al (2007) Endothelial sulfonylurea receptor 1-regulated NC Ca-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury. J Clin Invest 117(8):2105–2113

    PubMed  CAS  Google Scholar 

  202. Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L et al (2006) Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med 12(4):433–440

    PubMed  CAS  Google Scholar 

  203. Chen M, Dong Y, Simard JM (2003) Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J Neurosci 23(24):8568–8577

    PubMed  CAS  Google Scholar 

  204. Kunte H, Schmidt S, Eliasziw M, del Zoppo GJ, Simard JM, Masuhr F et al (2007) Sulfonylureas improve outcome in patients with type 2 diabetes and acute ischemic stroke. Stroke 38(9):2526–2530

    PubMed  CAS  Google Scholar 

  205. Fukuda AM, Badaut J (2012) Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflammation 9:279

    PubMed  CAS  Google Scholar 

  206. Sun MC, Honey CR, Berk C, Wong NL, Tsui JK (2003) Regulation of aquaporin-4 in a traumatic brain injury model in rats. J Neurosurg 98(3):565–569

    PubMed  CAS  Google Scholar 

  207. Kiening KL, van Landeghem FK, Schreiber S, Thomale UW, von Deimling A, Unterberg AW et al (2002) Decreased hemispheric Aquaporin-4 is linked to evolving brain edema following controlled cortical impact injury in rats. Neurosci Lett 324(2):105–108

    PubMed  CAS  Google Scholar 

  208. Manley GT, Binder DK, Papadopoulos MC, Verkman AS (2004) New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice. Neuroscience 129(4):983–991

    PubMed  CAS  Google Scholar 

  209. Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S, Schafer P et al (2011) The role of hypoxia-inducible factor-1alpha, aquaporin-4, and matrix metalloproteinase-9 in blood–brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg 114(1):92–101

    PubMed  CAS  Google Scholar 

  210. Ren Z, Iliff JJ, Yang L, Yang J, Chen X, Chen MJ et al (2013) ‘Hit & Run’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J Cereb Blood Flow Metab 33:834–845

    PubMed  CAS  Google Scholar 

  211. Taya K, Marmarou CR, Okuno K, Prieto R, Marmarou A (2010) Effect of secondary insults upon aquaporin-4 water channels following experimental cortical contusion in rats. J Neurotrauma 27(1):229–239

    PubMed  Google Scholar 

  212. Kleindienst A, Dunbar JG, Glisson R, Marmarou A (2013) The role of vasopressin V1A receptors in cytotoxic brain edema formation following brain injury. Acta Neurochir (Wien) 155(1):151–164

    PubMed  Google Scholar 

  213. Pop V, Sorensen DW, Kamper JE, Ajao DO, Murphy MP, Head E et al (2013) Early brain injury alters the blood–brain barrier phenotype in parallel with beta-amyloid and cognitive changes in adulthood. J Cereb Blood Flow Metab 33(2):205–214

    PubMed  CAS  Google Scholar 

  214. Alahmadi H, Vachhrajani S, Cusimano MD (2010) The natural history of brain contusion: an analysis of radiological and clinical progression. J Neurosurg 112(5):1139–1145

    PubMed  Google Scholar 

  215. Khoshyomn S, Tranmer BI (2004) Diagnosis and management of pediatric closed head injury. Semin Pediatr Surg 13(2):80–86

    PubMed  Google Scholar 

  216. Simard JM, Kilbourne M, Tsymbalyuk O, Tosun C, Caridi J, Ivanova S et al (2009) Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. J Neurotrauma 26(12):2257–2267

    PubMed  Google Scholar 

  217. Patel AD, Gerzanich V, Geng Z, Simard JM (2010) Glibenclamide reduces hippocampal injury and preserves rapid spatial learning in a model of traumatic brain injury. J Neuropathol Exp Neurol 69(12):1177–1190

    PubMed  CAS  Google Scholar 

  218. Abumiya T, Sasaguri T, Taba Y, Miwa Y, Miyagi M (2002) Shear stress induces expression of vascular endothelial growth factor receptor Flk-1/KDR through the CT-rich Sp1 binding site. Arterioscler Thromb Vasc Biol 22(6):907–913

    PubMed  CAS  Google Scholar 

  219. Davis ME, Grumbach IM, Fukai T, Cutchins A, Harrison DG (2004) Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor kappaB binding. J Biol Chem 279(1):163–168

    PubMed  CAS  Google Scholar 

  220. Korenaga R, Yamamoto K, Ohura N, Sokabe T, Kamiya A, Ando J (2001) Sp1-mediated downregulation of P2X4 receptor gene transcription in endothelial cells exposed to shear stress. Am J Physiol Heart Circ Physiol 280(5):H2214–H2221

    PubMed  CAS  Google Scholar 

  221. Yun S, Dardik A, Haga M, Yamashita A, Yamaguchi S, Koh Y et al (2002) Transcription factor Sp1 phosphorylation induced by shear stress inhibits membrane type 1-matrix metalloproteinase expression in endothelium. J Biol Chem 277(38):34808–34814

    PubMed  CAS  Google Scholar 

  222. Verstraeten SV, Mackenzie GG, Oteiza PI (2010) The plasma membrane plays a central role in cells response to mechanical stress. Biochim Biophys Acta 1798(9):1739–1749

    PubMed  CAS  Google Scholar 

  223. Chen M, Simard JM (2001) Cell swelling and a nonselective cation channel regulated by internal Ca2+ and ATP in native reactive astrocytes from adult rat brain. J Neurosci 21(17):6512–6521

    PubMed  CAS  Google Scholar 

  224. Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443(7112):700–704

    PubMed  CAS  Google Scholar 

  225. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C et al (2010) Pericytes regulate the blood–brain barrier. Nature 468(7323):557–561

    PubMed  CAS  Google Scholar 

  226. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R et al (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68(3):409–427

    PubMed  CAS  Google Scholar 

  227. Sa-Pereira I, Brites D, Brito MA (2012) Neurovascular unit: a focus on pericytes. Mol Neurobiol 45(2):327–347

    PubMed  CAS  Google Scholar 

  228. Sims DE (1986) The pericyte—a review. Tissue Cell 18(2):153–174

    PubMed  CAS  Google Scholar 

  229. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58(9):1094–1103

    PubMed  Google Scholar 

  230. Gaengel K, Genove G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29(5):630–638

    PubMed  CAS  Google Scholar 

  231. Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14(11):1398–1405

    PubMed  CAS  Google Scholar 

  232. Darland DC, Massingham LJ, Smith SR, Piek E, Saint-Geniez M, D’Amore PA (2003) Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev Biol 264(1):275–288

    PubMed  CAS  Google Scholar 

  233. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468(7323):562–566

    PubMed  CAS  Google Scholar 

  234. Fisher M (2009) Pericyte signaling in the neurovascular unit. Stroke 40(3 Suppl):S13–S15

    PubMed  CAS  Google Scholar 

  235. Dore-Duffy P (2008) Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 14(16):1581–1593

    PubMed  CAS  Google Scholar 

  236. Dore-Duffy P, Wang S, Mehedi A, Katyshev V, Cleary K, Tapper A et al (2011) Pericyte-mediated vasoconstriction underlies TBI-induced hypoperfusion. Neurol Res 33(2):176–186

    PubMed  CAS  Google Scholar 

  237. Kallakuri S, Kreipke CW, Rossi N, Rafols JA, Petrov T (2007) Spatial alterations in endothelin receptor expression are temporally associated with the altered microcirculation after brain trauma. Neurol Res 29(4):362–368

    PubMed  CAS  Google Scholar 

  238. Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 60(1):55–69

    PubMed  CAS  Google Scholar 

  239. Takata F, Dohgu S, Matsumoto J, Takahashi H, Machida T, Wakigawa T et al (2011) Brain pericytes among cells constituting the blood–brain barrier are highly sensitive to tumor necrosis factor-alpha, releasing matrix metalloproteinase-9 and migrating in vitro. J Neuroinflammation 8:106

    PubMed  CAS  Google Scholar 

  240. Dore-Duffy P, Wang X, Mehedi A, Kreipke CW, Rafols JA (2007) Differential expression of capillary VEGF isoforms following traumatic brain injury. Neurol Res 29(4):395–403

    PubMed  CAS  Google Scholar 

  241. DeGracia DJ, Kreipke CW, Kayali FM, Rafols JA (2007) Brain endothelial HSP-70 stress response coincides with endothelial and pericyte death after brain trauma. Neurol Res 29(4):356–361

    PubMed  CAS  Google Scholar 

  242. Castejon OJ (2011) Ultrastructural pathology of cortical capillary pericytes in human traumatic brain oedema. Folia Neuropathol 49(3):162–173

    PubMed  Google Scholar 

  243. Castejon OJ (1984) Submicroscopic changes of cortical capillary pericytes in human perifocal brain edema. J Submicrosc Cytol 16(3):601–618

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Conflict of interests: None. Funding: R37NS037074-13 (EHL), RO1NS076694-02(EHL), P01NS055104-05 (EHL), R01NS0800991-01(KA), RO1NS049430-07(KVL), RO1NS069939-02 (KVL), K08N5057339-04 (JL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josephine Lok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lok, J. et al. (2014). Neurovascular Responses to Traumatic Brain Injury. In: Lo, E., Lok, J., Ning, M., Whalen, M. (eds) Vascular Mechanisms in CNS Trauma. Springer Series in Translational Stroke Research, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8690-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8690-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8689-3

  • Online ISBN: 978-1-4614-8690-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics