Skip to main content

Exercise

  • Chapter
  • First Online:
High Altitude
  • 2873 Accesses

Abstract

Altitude has substantial effects on sport and exercise performance. This is the consequence of two domains; (1) physiological and (2) physical. A reduction in barometric pressure decreases partial pressure of inspired oxygen and thereby partial pressures and contents at every step along the oxygen cascade (Fig. 16.1). Thus the availability of oxygen at the mitochondrial level to produce ATP via oxidative phosphorylation is also reduced. This requires adjustments within the oxygen transport cascade for a given workrate and affects the maximal attainable oxygen uptake (VO2max) and hence compromises endurance. In contrast, the decrease in air density reduces air resistance which will facilitate high-velocity performances such as sprint running and throwing events. Various forms of altitude training have been proposed to increase sea level exercise endurance capacity and these will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buskirk ER, Kollias J, Akers RF, Prokop EK, Reategui EP. Maximal performance at altitude and on return from altitude in conditioned runners. J Appl Physiol. 1967;23:259–66.

    PubMed  CAS  Google Scholar 

  2. Gore CJ, Hahn AG, Scroop GC, et al. Increased arterial desaturation in trained cyclists during maximal exercise at 580 m altitude. J Appl Physiol. 1996;80:2204–10.

    PubMed  CAS  Google Scholar 

  3. Siebenmann C, Robach P, Jacobs RA, et al. “Live high–train low” using normobaric hypoxia did not increase exercise performance in a double-blinded, placebo-controlled study. J Appl Physiol. 2012;112:106–17.

    Article  PubMed  Google Scholar 

  4. Wehrlin JP, Hallen J. Linear decrease in. VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol. 2006 Mar;96(4):404–12.

    Google Scholar 

  5. Mollard P, Woorons X, Letournel M, et al. Role of maximal heart rate and arterial O2 saturation on the decrement of VO2max in moderate acute hypoxia in trained and untrained men. Int J Sports Med. 2007;28:186–92.

    Google Scholar 

  6. Wagner PD, Sutton JR, Reeves JT, Cymerman A, Groves BM, Malconian MK. Operation Everest II: pulmonary gas exchange during a simulated ascent of Mt Everest. J Appl Physiol. 1987;63:2348–59.

    PubMed  CAS  Google Scholar 

  7. Amann M, Romer LM, Subudhi AW, Pegelow DF, Dempsey JA. Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. J Physiol. 2007;581:389–403.

    Article  PubMed  CAS  Google Scholar 

  8. Lundby C, Damsgaard R. Exercise performance in hypoxia after novel erythropoiesis stimulating protein treatment. Scand J Med Sci Sports. 2006;16:35–40.

    Article  PubMed  CAS  Google Scholar 

  9. Robach P, Calbet JAL, Thomsen JJ, et al. The ergogenic effect of recombinant human erythropoietin on VO2max depends on the severity of arterial hypoxemia. PLoS One. 2008;3:e2996.

    Article  PubMed  CAS  Google Scholar 

  10. Saltin B. Aerobic and anaerobic work capacity at 2,300 meters. Schweiz Z Sportmed. 1966;14:81–7.

    PubMed  CAS  Google Scholar 

  11. Schuler B, Thomsen JJ, Gassmann M, Lundby C. Timing the arrival at 2340 m altitude for aerobic performance. Scand J Med Sci Sports. 2007;17:588–94.

    Article  PubMed  CAS  Google Scholar 

  12. Lundby C, Møller P, Kanstrup IL, Olsen NV. Heart rate response to hypoxic exercise: role of dopamine D2-receptors and effect of oxygen supplementation. Clin Sci. 2001;101:377–83.

    Article  PubMed  CAS  Google Scholar 

  13. Lundby C, Sander M, van Hall G, Saltin B, Calbet JAL. Maximal exercise and muscle oxygen extraction in acclimatizing lowlanders and high altitude natives. J Physiol. 2006;573:535–47.

    Article  PubMed  CAS  Google Scholar 

  14. Calbet JAL, Boushel R, Rådegran G, Søndergaard H, Wagner PD, Saltin B. Why is VO2max after altitude acclimatization still reduced despite normalization of arterial O2 content? Am J Physiol Regul Integr Comp Physiol. 2003;284:R304–16.

    Google Scholar 

  15. Horstman D, Weiskopf R, Jackson RE. Work capacity during 3-wk sojourn at 4,300 m: effects of relative polycythemia. J Appl Physiol. 1980;49:311–8.

    PubMed  CAS  Google Scholar 

  16. Maher JT, Jones LG, Hartley LH. Effects of high-altitude exposure on submaximal endurance capacity of men. J Appl Physiol. 1974;37:895–8.

    PubMed  CAS  Google Scholar 

  17. Beidleman BA, Muza SR, Rock PB, et al. Exercise responses after altitude acclimatization are retained during reintroduction to altitude. Med Sci Sports Exerc. 1997;29:1588–95.

    Article  PubMed  CAS  Google Scholar 

  18. Fulco CS, Rock PB, Cymerman C. Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med. 1998;69:793–801.

    PubMed  CAS  Google Scholar 

  19. Bassett DR, Kyle CR, Passfield L, Broker JP, Burke ER. Comparing cycling world hour records, 1967-1996: modeling with empirical data. Med Sci Sports Exerc. 1999;31:1665–76.

    Article  PubMed  Google Scholar 

  20. Dickinson ER, Piddington MJ, Brain T. Project Olympics. Schweiz Z Sportmed. 1966;14:305–8.

    PubMed  CAS  Google Scholar 

  21. Peronnet F, Thibault G, Cousineau DL. A theoretical analysis of the effect of altitude on running performance. J Appl Physiol. 1991;70:399–404.

    PubMed  CAS  Google Scholar 

  22. Juel C, Lundby C, Sander M, Calbet JA, Hall G. Human skeletal muscle and erythrocyte proteins involved in acid-base homeostasis: adaptations to chronic hypoxia. J Physiol. 2003;548:639–48.

    Article  PubMed  CAS  Google Scholar 

  23. Levine BD, Stray-Gundersen J, Mehta RD. Effect of altitude on football performance. Scand J Med Sci Sports. 2008;18:76–84.

    Article  PubMed  Google Scholar 

  24. Cunningham DJ, Petersen ES, Pickering TG, Sleight P. The effects of hypoxia, hypercapnia, and asphyxia on the baroreceptor-cardiac reflex at rest and during exercise in man. Acta Physiol Scand. 1972;86: 456–65.

    PubMed  CAS  Google Scholar 

  25. Amann M, Pegelow DF, Jacques AJ, Dempsey JA. Inspiratory muscle work in acute hypoxia influences locomotor muscle fatigue and exercise performance of healthy humans. Am J Physiol. 2007;293:R2036–45.

    CAS  Google Scholar 

  26. Sutton JR, Reeves JT, Wagner PD, et al. Operation Everest II: oxygen transport during exercise at extreme simulated altitude. J Appl Physiol. 1988;64:1309–21.

    PubMed  CAS  Google Scholar 

  27. Alexander JK, Hartley LH, Modelski M, Grover RF. Reduction of stroke volume during exercise in man following ascent to 3,100 m altitude. J Appl Physiol. 1967;23:849–58.

    PubMed  CAS  Google Scholar 

  28. Kahler RL, Gaffney TE, Braunwald E. The effects of autonomic nervous system inhibition on the circulatory response to muscular exercise*. J Clin Invest. 1962;41:1981–7.

    Article  PubMed  CAS  Google Scholar 

  29. Lundby C, Araoz M, van Hall G. Peak heart rate decreases with increasing severity of acute hypoxia. High Alt Med Biol. 2001;2:369–76.

    Article  PubMed  CAS  Google Scholar 

  30. Boushel R, Calbet J-AL, Radegran G, Sondergaard H, Wagner PD, Saltin B. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude. Circulation. 2001;104:1785–91.

    Article  PubMed  CAS  Google Scholar 

  31. Wagner PD. Reduced maximal cardiac output at altitude—mechanisms and significance. Respir Physiol. 2000;120:1–11.

    Article  PubMed  CAS  Google Scholar 

  32. Reeves JT, Groves BM, Sutton JR, et al. Operation Everest II: preservation of cardiac function at extreme altitude. J Appl Physiol. 1987;63:531–9.

    PubMed  CAS  Google Scholar 

  33. Alexander JK, Grover JF. Mechanism of reduced cardiac stroke volume at high altitude. Clin Cardiol. 1983;6:301–3.

    Article  PubMed  CAS  Google Scholar 

  34. Naeije R. Pulmonary circulation in hypoxia. Int J Sports Med. 1992;13 Suppl 1:S27–30.

    Article  PubMed  Google Scholar 

  35. Butterfield GE, Gates J, Fleming S, Brooks GA, Sutton JR, Reeves JT. Increased energy intake minimizes weight loss in men at high altitude. J Appl Physiol. 1992;72:1741–8.

    PubMed  CAS  Google Scholar 

  36. Brooks GA, Butterfield GE, Wolfe RR, et al. Increased dependence on blood glucose after acclimatization to 4,300 m. J Appl Physiol. 1991;70:919–27.

    Article  PubMed  CAS  Google Scholar 

  37. Lundby C, Van Hall G. Substrate utilization in sea level residents during exercise in acute hypoxia and after 4 weeks of acclimatization to 4100 m. Acta Physiol Scand. 2002;176:195–201.

    Article  PubMed  CAS  Google Scholar 

  38. Wagner PD. Origin of the lactate paradox: muscles or brain? J Appl Physiol. 2009;106:740–1.

    PubMed  Google Scholar 

  39. Wagner PD, Lundby C. The lactate paradox: does acclimatization to high altitude affect blood lactate during exercise? Med Sci Sports Exerc. 2007; 39:749–55.

    Article  PubMed  Google Scholar 

  40. van Hall G, Lundby C, Araoz M, Calbet JAL, Sander M, Saltin B. The lactate paradox revisited in lowlanders during acclimatization to 4100 m and in high-altitude natives. J Physiol. 2009;587:1117–29.

    Article  PubMed  CAS  Google Scholar 

  41. Hansen J, Sander M. Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia. J Physiol. 2003;546:921–9.

    Article  PubMed  CAS  Google Scholar 

  42. Katayama K, Ishida K, Iwamoto E, Iemitsu M, Koike T, Saito M. Hypoxia augments muscle sympathetic neural response to leg cycling. Am J Physiol. 2011;301:R456–64.

    CAS  Google Scholar 

  43. Pronk M, Tiemessen I, Hupperets MDW, et al. Persistence of the lactate paradox over 8 weeks at 3800 m. High Alt Med Biol. 2003;4:431–43.

    Article  PubMed  CAS  Google Scholar 

  44. Amann M, Calbet JAL. Convective oxygen transport and fatigue. J Appl Physiol. 2008;104:861–70.

    Article  PubMed  Google Scholar 

  45. Subudhi AW, Miramon BR, Granger ME, Roach RC. Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia. J Appl Physiol. 2009;106:1153–8.

    Article  PubMed  CAS  Google Scholar 

  46. Subudhi AW, Olin JT, Dimmen AC, Polaner DM, Kayser B, Roach RC. Does cerebral oxygen delivery limit incremental exercise performance? J Appl Physiol. 2011;111:1727–34.

    Article  PubMed  CAS  Google Scholar 

  47. Imray CHE, Myers SD, Pattinson KTS, et al. Effect of exercise on cerebral perfusion in humans at high altitude. J Appl Physiol. 2005;99:699–706.

    Article  PubMed  CAS  Google Scholar 

  48. Rasmussen P, Stie H, Nielsen B, Nybo L. Enhanced cerebral CO2 reactivity during strenuous exercise in man. Eur J Appl Physiol. 2006;96:299–304.

    Article  PubMed  CAS  Google Scholar 

  49. Siebenmann C, Sorensen H, Jacobs RA, Haider T, Rasmussen P, Lundby C. Hypocapnia during hypoxic exercise and its impact on cerebral oxygenation, ventilation and maximal whole body VO2 uptake. Respir Physiol Neurobiol. 2013;185: 461–7.

    Article  PubMed  Google Scholar 

  50. Anholm JD, Foster GP. Con: hypoxic pulmonary vasoconstriction is not a limiting factor of exercise at high altitude. High Alt Med Biol. 2011;12:3313–7.

    Google Scholar 

  51. Naeije R. Pro: hypoxic pulmonary vasoconstriction is a limiting factor of exercise at high altitude. High Alt Med Biol. 2011;12:309–12.

    Article  PubMed  Google Scholar 

  52. Olfert IM, Loeckinger A, Treml B, et al. Sildenafil and bosentan improve arterial oxygenation during acute hypoxic exercise: a controlled laboratory trial. Wilderness Environ Med. 2011;22:211–21.

    Article  PubMed  Google Scholar 

  53. Faoro V, Lamotte M, Deboeck G, et al. Effects of sildenafil on exercise capacity in hypoxic normal subjects. High Alt Med Biol. 2007;8:155–63.

    Article  PubMed  CAS  Google Scholar 

  54. Ghofrani HA, Reichenberger F, Kohstall MG, et al. Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: a randomized, double-blind, placebo-controlled crossover trial. Ann Intern Med. 2004;141:169–77.

    Article  PubMed  CAS  Google Scholar 

  55. Richalet JP, Gratadour P, Robach P, et al. Sildenafil inhibits altitude-induced hypoxemia and pulmonary hypertension. Am J Respir Crit Care Med. 2005;171:275–81.

    Article  PubMed  Google Scholar 

  56. Siebenmann C, Bloch KE, Lundby C, Nussbamer-Ochsner Y, Schoeb M, Maggiorini M. Dexamethasone improves maximal exercise capacity of individuals susceptible to high altitude pulmonary edema at 4559 m. High Alt Med Biol. 2011;12:169–77.

    Article  PubMed  CAS  Google Scholar 

  57. Fischler M, Maggiorini M, Dorschner L, et al. Dexamethasone but not tadalafil improves exercise capacity in adults prone to high-altitude pulmonary edema. Am J Respir Crit Care Med. 2009;180:346–52.

    Article  PubMed  CAS  Google Scholar 

  58. Faoro V, Boldingh S, Moreels M, et al. Bosentan decreases pulmonary vascular resistance and improves exercise capacity in acute hypoxia. Chest. 2009;135:1215–22.

    Article  PubMed  CAS  Google Scholar 

  59. DeGraff AC, Grover RF, Johnson RL, Hammond JW, Miller JM. Diffusing capacity of the lung in Caucasians native to 3,100 m. J Appl Physiol. 1970;29:71–6.

    PubMed  Google Scholar 

  60. Dempsey JA, Reddan WG, Birnbaum ML, et al. Effects of acute through life-long hypoxic exposure on exercise pulmonary gas exchange. Respir Physiol. 1971;13:62–89.

    Article  PubMed  CAS  Google Scholar 

  61. Lundby C, Calbet JAL, van Hall G, Saltin B, Sander M. Pulmonary gas exchange at maximal exercise in Danish lowlanders during 8 wk of acclimatization to 4,100 m and in high-altitude Aymara natives. Am J Physiol. 2004;287:R1202–8.

    Article  CAS  Google Scholar 

  62. Schoene RB. Limits of human lung function at high altitude. J Exp Biol. 2001;204:3121–7.

    PubMed  CAS  Google Scholar 

  63. Cerny FC, Dempsey JA, Reddan WG. Pulmonary gas exchange in nonnative residents of high altitude. J Clin Invest. 1973;52:2993–9.

    Article  PubMed  CAS  Google Scholar 

  64. Wagner PD, Araoz M, Boushel R, et al. Pulmonary gas exchange and acid-base state at 5,260 m in high-altitude Bolivians and acclimatized lowlanders. J Appl Physiol. 2002;92:1393–400.

    PubMed  Google Scholar 

  65. Zhuang J, Droma T, Sutton JR, et al. Smaller alveolar-arterial O2 gradients in Tibetan than Han residents of Lhasa (3658 m). Respir Physiol. 1996;103:75–82.

    Article  PubMed  CAS  Google Scholar 

  66. Hsia CCW, Carbayo JJP, Yan X, Bellotto DJ. Enhanced alveolar growth and remodeling in guinea pigs raised at high altitude. Respir Physiol Neurobiol. 2005;147:105–15.

    Article  PubMed  Google Scholar 

  67. McDonough P, Dane DM, Hsia CCW, Yilmaz C, Johnson RL. Long-term enhancement of pulmonary gas exchange after high-altitude residence during maturation. J Appl Physiol. 2006;100:474–81.

    Article  PubMed  Google Scholar 

  68. Johnson RL, Cassidy SS, Grover RF, Schutte JE, Epstein RH. Functional capacities of lungs and thorax in beagles after prolonged residence at 3,100 m. J Appl Physiol. 1985;59:1773–82.

    PubMed  Google Scholar 

  69. Lundby C, Calbet J. Why are high altitude natives so strong at altitude? Adv Exp Med Biol. 2012.

    Google Scholar 

  70. Brutsaert TD. Do high-altitude natives have enhanced exercise performance at altitude? Appl Physiol Nutr Metab. 2008;33:582–92.

    Article  PubMed  CAS  Google Scholar 

  71. Brutsaert TD, Spielvogel H, Soria R, Caceres E, Buzenet G, Haas JD. Effect of developmental and ancestral high-altitude exposure on VO2 peak of Andean and European/North American natives. Am J Phys Anthropol. 1999;110:435–55.

    Article  PubMed  CAS  Google Scholar 

  72. Brutsaert TD, Parra EJ, Shriver MD, et al. Spanish genetic admixture is associated with larger VO2max decrement from sea level to 4,338 m in Peruvian Quechua. J Appl Physiol. 2003;95:519–28.

    Google Scholar 

  73. Marconi C, Marzorati M, Grassi B, et al. Second generation Tibetan lowlanders acclimatize to high altitude more quickly than Caucasians. J Physiol. 2004;556:661–71.

    Article  PubMed  CAS  Google Scholar 

  74. Niu W, Wu Y, Li B, Chen N, Song S. Effects of long-term acclimatization in lowlanders migrating to high altitude: comparison with high altitude residents. Eur J Appl Physiol. 1995;71:543–8.

    Article  CAS  Google Scholar 

  75. Brutsaert TD, Haas JD, Spielvogel H. Absence of work efficiency differences during cycle ergometry exercise in Bolivian Aymara. High Alt Med Biol. 2004;5:41–59.

    Article  PubMed  Google Scholar 

  76. Marconi C, Marzorati M, Sciuto D, Ferri A, Cerretelli P. Economy of locomotion in high-altitude Tibetan migrants exposed to normoxia. J Physiol. 2005;569:667–75.

    Article  PubMed  CAS  Google Scholar 

  77. Lundby C, Millet GP, Calbet JA, Bärtsch P, Subudhi AW. Does altitude training increase performance in elite athletes? Br J Sports Med. 2012;46:792–5.

    Article  PubMed  Google Scholar 

  78. Mellerowicz H, Meller W, Woweries J, et al. Vergleichende untersuchungen über wirkungen von höhentraining auf die dauerleistung in meereshöhe. Sportarzt Sportmedizin. 1970;21:207–40.

    Google Scholar 

  79. Adams WC, Bernauer EM, Dill DB, Bomar JB. Effects of equivalent sea-level and altitude training on VO2max and running performance. J Appl Physiol. 1975;39:262–6.

    PubMed  CAS  Google Scholar 

  80. Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol. 1997;83:102–12.

    PubMed  CAS  Google Scholar 

  81. Bailey DM, Davis B, Romer L, Castell L, Newsholme E, Gandy G. Implications of moderate altitude training for sea-level endurance in elite distance runners. Eur J Appl Physiol. 1998;78:360–8.

    Article  CAS  Google Scholar 

  82. Gore CJ, Hahn AG, Burge CM, Telford RD. VO2max and haemoglobin mass of trained athletes during high intensity training. Int J Sports Med. 1997;28:477,82.

    Google Scholar 

  83. Svendenhag J, Piehl-Aulin K, Skog C, Saltin B. Increased left ventricular muscle mass after long-term altitude training in athletes. Acta Physiol Scand. 1997;161:63–70.

    Article  Google Scholar 

  84. Friedmann B, Jost J, Rating T, et al. Effects of iron supplementation on total body hemoglobin during endurance training at moderate altitude. Int J Sports Med. 1999;20:78,85.

    Google Scholar 

  85. Gore CJ, Craig NP, Hahn AG, et al. Altitude training at 2690 m does not increase total haemoglobin mass or sea level VO2max in world champion track cyclists. J Sci Med Sport. 1998;1:156–70.

    Article  PubMed  CAS  Google Scholar 

  86. Friedmann B, Frese F, Menold E, Kauper F, Jost J, Bärtsch P. Individual variation in the erythropoietic response to altitude training in elite junior swimmers. Br J Sports Med. 2005;39:148–53.

    Article  PubMed  CAS  Google Scholar 

  87. Stray-Gundersen J, Chapman RF, Levine BD. “Living high-training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol. 2001;91:1113–20.

    PubMed  CAS  Google Scholar 

  88. Stray-Gundersen J, Levine BD. Live high, train low at natural altitude. Scand J Med Sci Sports. 2008;18:21–8.

    Article  PubMed  Google Scholar 

  89. Wehrlin JP, Zuest P, Hallen J, Marti B. Linear decrease in. VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol. 2006 Mar;96(4):404–12.

    Article  Google Scholar 

  90. Roberts AD, Clark SA, Townsend NE, Anderson ME, Gore CJ, Hahn AG. Changes in performance, maximal oxygen uptake and maximal accumulated oxygen deficit after 5, 10 and 15 days of live high:train low altitude exposure. Eur J Appl Physiol. 2003;88:390–5.

    Article  PubMed  CAS  Google Scholar 

  91. Ashenden MJ, Gore CJ, Dobson GP, Hahn AG. “Live high, train low” does not change the total haemoglobin mass of male endurance athletes sleeping at a simulated altitude of 3000 m for 23 nights. Eur J Appl Physiol. 1999;80:479–84.

    Article  CAS  Google Scholar 

  92. Ashenden MJ, Gore CJ, Martin DT, Dobson GP, Hahn AG. Effects of a 12-day “live high, train low” camp on reticulocyte production and haemoglobin mass in elite female road cyclists. Eur J Appl Physiol. 1999;80:472–8.

    Article  CAS  Google Scholar 

  93. Saunders PU, Telford RD, Pyne DB, Hahn AG, Gore CJ. Improved running economy and increased hemoglobin mass in elite runners after extended moderate altitude exposure. J Sci Med Sport. 2009;12:67–72.

    Article  PubMed  CAS  Google Scholar 

  94. Robach P, Schmitt L, Brugniaux J, et al. Living high–training low: effect on erythropoiesis and maximal aerobic performance in elite Nordic skiers. Eur J Appl Physiol. 2006;97:695–705.

    Article  PubMed  Google Scholar 

  95. Robach P, Schmitt L, Brugniaux J, et al. Living high–training low: effect on erythropoiesis and aerobic performance in highly-trained swimmers. Eur J Appl Physiol. 2006;96:423–33.

    Article  PubMed  Google Scholar 

  96. Brugniaux JV, Schmitt L, Robach P, et al. Eighteen days of “living high, training low” stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners. J Appl Physiol. 2006;100:203–11.

    Article  PubMed  Google Scholar 

  97. Neya M, Enoki T, Kumai Y, Sugoh T, Kawahara T. The effects of nightly normobaric hypoxia and high intensity training under intermittent normobaric hypoxia on running economy and hemoglobin mass. J Appl Physiol. 2007;103:828–34.

    Article  PubMed  CAS  Google Scholar 

  98. Gore CJ, Hahn AG, Aughey RJ, et al. Live high:train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol Scand. 2001;173:275–86.

    Article  PubMed  CAS  Google Scholar 

  99. Lundby C, Calbet JAL, Sander M, et al. Exercise economy does not change after acclimatization to moderate to very high altitude. Scand J Med Sci Sports. 2007;17:281–91.

    PubMed  CAS  Google Scholar 

  100. Robach P, Siebenmann C, Jacobs RA, Rasmussen P, Nordsborg N, Pesta A, Gnaiger R, Diaz V, Christ A, Fiedler J, Crivelli N, Secher NH, Pichon A, Maggiorini M, Lundby C. The role of haemoglobin mass on VO2max following normobaric ‘live high-train low’ in endurance-trained athletes. Br J Sports Med. 2012;46:822–7.

    Article  PubMed  Google Scholar 

  101. Nordsborg NB, Siebenmann C, Jacobs RA, Rasmussen P, Diaz V, Robach P, Lundby C. Four weeks of normobaric “live high-train low” do not alter muscular or systemic capacity for maintaining pH and K+ homeostasis during intense exercise. J Appl Physiol. 2012;112:2027–36.

    Article  PubMed  CAS  Google Scholar 

  102. Richardson RS, Duteil S, Wary C, Wray DW, Hoff J, Carlier PG. Human skeletal muscle intracellular oxygenation: the impact of ambient oxygen availability. J Physiol. 2006;571:415–24.

    Article  PubMed  CAS  Google Scholar 

  103. Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD. Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest. 1995;96:1916–26.

    Article  PubMed  CAS  Google Scholar 

  104. Semenza GL, Shimoda LA, Prabhakar NR. Regulation of gene expression by HIF-1. Novartis Found Symp. 2006;272:2–8.

    Article  PubMed  CAS  Google Scholar 

  105. Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol. 2001;91:173–82.

    PubMed  CAS  Google Scholar 

  106. Hendriksen IJ, Meeuwsen T. The effect of intermittent training in hypobaric hypoxia on sea-level exercise: a cross-over study in humans. Eur J Appl Physiol. 2003;88:396–403.

    Article  PubMed  Google Scholar 

  107. Meeuwsen T, Hendriksen IJ, Holewijn M. Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. Eur J Appl Physiol. 2001;84:283–90.

    Article  PubMed  CAS  Google Scholar 

  108. Hoppeler H, Klossner S, Vogt M. Training in hypoxia and its effects on skeletal muscle tissue. Scand J Med Sci Sports. 2008;18:38–49.

    Article  PubMed  Google Scholar 

  109. Holm L, Haslund ML, Robach P, et al. Skeletal muscle myofibrillar and sarcoplasmic protein synthesis rates are affected differently by altitude-induced hypoxia in native lowlanders. PLoS One. 2010;5:e15606.

    Article  PubMed  CAS  Google Scholar 

  110. Mizuno M, Savard GK, Areskog N-H, Lundby C, Saltin B. Skeletal muscle adaptations to prolonged exposure to extreme altitude: a role of physical activity? High Alt Med Biol. 2008;9:311–7.

    Article  PubMed  CAS  Google Scholar 

  111. Lundby C, Pilegaard H, Andersen JL, van Hall G, Sander M, Calbet JAL. Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle. J Exp Biol. 2004;207:3865–71.

    Article  PubMed  CAS  Google Scholar 

  112. Truijens MJ, Toussaint HM, Dow J, Levine BD. Effect of high-intensity hypoxic training on sea-level swimming performances. J Appl Physiol. 2003;94:733–43.

    PubMed  CAS  Google Scholar 

  113. Geiser J, Vogt M, Billeter R, Zuleger C, Belforti F, Hoppeler H. Training high–living low: changes of aerobic performance and muscle structure with training at simulated altitude. Int J Sports Med. 2001;22:579,85.

    Google Scholar 

  114. Ventura N, Hoppeler H, Seiler R, Binggeli A, Mullis P, Vogt M. The response of trained athletes to six weeks of endurance training in hypoxia or normoxia. Int J Sports Med. 2003;24:166,72.

    Google Scholar 

  115. Dufour SP, Ponsot E, Zoll J, et al. Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity. J Appl Physiol. 2006;100:1238–48.

    Article  PubMed  CAS  Google Scholar 

  116. Julian CG, Gore CJ, Wilber RL, et al. Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. J Appl Physiol. 2004;96:1800–7.

    Article  PubMed  CAS  Google Scholar 

  117. Rodríguez FA, Truijens MJ, Townsend NE, Stray-Gundersen J, Gore CJ, Levine BD. Performance of runners and swimmers after four weeks of intermittent hypobaric hypoxic exposure plus sea level training. J Appl Physiol. 2007;103:1523–35.

    Article  PubMed  Google Scholar 

  118. Truijens MJ, Rodríguez FA, Townsend NE, Stray-Gundersen J, Gore CJ, Levine BD. The effect of intermittent hypobaric hypoxic exposure and sea level training on submaximal economy in well-trained swimmers and runners. J Appl Physiol. 2008;104:328–37.

    Article  PubMed  Google Scholar 

  119. Tadibi V, Dehnert C, Menold E, Bärtsch P. Unchanged anaerobic and aerobic performance after short-term intermittent hypoxia. Med Sci Sports Exerc. 2007;39:585–64.

    Article  Google Scholar 

  120. Calbet JAL, Rådegran G, Boushel R, Saltin B. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass. J Physiol. 2009;587:477–90.

    Article  PubMed  CAS  Google Scholar 

  121. Robach P, Lundby C. Is live high–train low altitude training relevant for elite athletes with already high total hemoglobin mass? Scand J Med Sci Sports. 2012;22:303–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Lundby Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lundby, C. (2014). Exercise. In: Swenson, E., Bärtsch, P. (eds) High Altitude. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8772-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8772-2_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8771-5

  • Online ISBN: 978-1-4614-8772-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics