Skip to main content

Wild Salmonids in the Urban Environment: Lethal and Sublethal Effects

  • Chapter
  • First Online:
Wild Salmonids in the Urbanizing Pacific Northwest

Abstract

Pacific Northwest salmonid populations have decreased in watersheds where a large proportion of the land is urbanized. Between the 1940s and 1990s, salmon abundance declines were greater in Puget Sound, Washington basins with higher urbanization rates than in basins with less urbanization (Moscrip and Montgomery 1997). Also in the Puget Sound region, the presence of coho salmon at urbanized sites declined by 75 % between 1986 and 2001 (Bilby and Mollot 2008). Coho salmon (Oncorhynchus kisutch) abundance also declined on lands converted to urban uses between 1984 and 1998 in the Snohomish River basin (Pess et al. 2002). Productivity was lowest in sub-watersheds with more urban land cover for 22 spring-summer Chinook (O. tshawytscha) salmon populations in eastern Oregon, eastern Washington, and Idaho (Regetz 2003). Similarly, the percent of fish assemblages composed of salmonids was lower in highly urbanized areas in western Oregon’s Willamette Valley (Waite et al. 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bioaccumulation can occur as prey species that have consumed and retained toxic compounds are subsequently consumed by predators that store toxic compounds at even higher tissue concentrations. Lipid-soluble substances tend to bioaccumulate; whereas, water-soluble contaminants generally do not. However, some metals (e.g., mercury) and most organic chemicals have the potential to bioaccumulate. Through this process, contaminant concentrations can increase in a predator’s tissues well beyond concentrations measured in surrounding waters or sediments, with the highest concentrations and most severe biological effects found in top predators. The level of exposure depends on how concentrated contaminants are in the water, sediments, and prey, and the volume of each that associates with the predator (e.g., food abundance or gill water contact).

  2. 2.

    DDT (dichloro-diphenyl-trichloroethane) is an organochlorine insecticide once used extensively in North America but its manufacturing and use is now banned in the United States, Canada, and Mexico. However, DDT and its main breakdown products DDE (dichloro-diphenyl-dichloroethylene) and DDD dichloro-diphenyl-dichloroethane still persist in aquatic sediments.

References

  • Achord S, Zabel RW, Sandford BP (2007) Migration timing, growth, and estimated parr-to-smolt survival rates of wild Snake River spring–summer Chinook salmon from the Salmon River basin, Idaho, to the lower Snake River. Trans Am Fish Soc 136(1):142–154

    Article  Google Scholar 

  • Arkhoosh MR, Boylen D, Dietrich J, Anulacion BF, Ylitalo G, Bravo CF, Johnson LL, Loge FJ, Collier TK (2010) Disease susceptibility of salmon exposed to polybrominated diphenyl ethers (PBDEs). Aquat Toxicol 98:51–59

    Article  Google Scholar 

  • Arkoosh MR, Casillas E, Huffman P, Clemons E, Evered J, Stein JE, Varanasi U (1998) Increased susceptibility of juvenile Chinook salmon from a contaminated estuary to Vibrio anguillarum. Trans Am Fish Soc 127(3):360–374

    Article  Google Scholar 

  • Arsenault JTM, Fairchild WL, MacLatchy DL, Burridge L, Haya K, Brown SB (2004) Effects of water-borne 4-nonylphenol and 17β-estradiol exposures during parr-smolt transformation on growth and plasma IGF-I of Atlantic salmon (Salmo salar L). Aquat Toxicol 66(3):255–265

    Article  CAS  PubMed  Google Scholar 

  • Associated Press (2013) Study links coho salmon deaths to stormwater runoff from Washington highways. January 22, 2013. Oregon Live. http://blog.oregonlive.com/environment_impact/print.html?entry=/2013/01/study_links_coho_salmon_deaths.html. Accessed 29 Apr 2013

  • Baldwin DH, Sandahl JF, Labenia JS, Scholz NL (2003) Sublethal effects of copper on coho salmon: impacts on nonoverlapping receptor pathways in the peripheral olfactory nervous system. Environ Toxicol Chem 22(10):2266–2274

    Article  CAS  PubMed  Google Scholar 

  • Baldwin DH, Spromberg JA, Collier TK, Scholz NL (2009) A fish of many scales: extrapolating sublethal pesticide exposures to the productivity of wild salmon populations. Ecol Appl 19(8):2004–2015

    Article  PubMed  Google Scholar 

  • Bash J, Berman C, Bolton S (2001) Effects of turbidity and suspended solids on salmonids. Center for Streamside Studies, University of Washington, Seattle, WA

    Google Scholar 

  • Bilby RE, Mollot LA (2008) Effect of changing land use patterns on the distribution of coho salmon (Oncorhynchus kisutch) in the Puget Sound region. Can J Fish Aquat Sci 65(10):2138–2148

    Article  Google Scholar 

  • Bjornn TC, Reiser DW (1991) Habitat requirements of salmonids in streams. In: Meehan WR (ed) Influences of forest and rangeland management on salmonid fishes and their habitats. Special Publication 19. American Fisheries Society, Bethesda, Maryland, p 83–138

    Google Scholar 

  • Cooke SJ, Hinch SG, Farrell AP, Lapointe MF, Jones SRM, Macdonald JS, Patterson DA, Healey MC, Van Der Kraak G (2004) Abnormal migration timing and high en route mortality of sockeye salmon in the Fraser River, British Columbia. Fisheries 29:22–33

    Article  Google Scholar 

  • Debruyn AMH, Ikonomou MG, Gobas FAPC (2004) Magnification and toxicity of PCBs, PCDDs, and PCDFs in upriver-migrating Pacific salmon. Environ Sci Technol 38(23):6217–6224

    Article  CAS  PubMed  Google Scholar 

  • Everson LB (1973) Growth and food consumption of juvenile coho salmon exposed to natural and elevated fluctuating temperatures. Master’s thesis, Oregon State University, Corvallis, OR

    Google Scholar 

  • Feist BE, Buhle ER, Arnold P, Davis JW, Scholz NL (2011) Landscape ecotoxicology of coho salmon spawner mortality in urban streams. PLoS One 6(8):e23424. doi:10.1371/journal.pone.0023424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fry FEJ (1947) Effects of the environment on animal activity. University of Toronto Studies Biological Series 55. Ontario Research Laboratory Publication 68, Toronto, ON

    Google Scholar 

  • Fryer JL, Pilcher KS (1974) Effects of temperature on diseases of salmonid fishes. EPA-660/3-73-020. US EPA Office of Research and Development, Washington, DC

    Google Scholar 

  • Galbraith RV, MacIsaac EA, Macdonald JS, Farrell AP (2006) The effect of suspended sediment on fertilization success in sockeye (Oncorhynchus nerka) and coho (Oncorhynchus kisutch) salmon. Can J Fish Aquat Sci 63(11):2487–2494

    Article  Google Scholar 

  • Golden JT (1978) The effects of fluctuating temperatures on the lethal tolerance limits of coastal cutthroat trout (Salmo clarki clarki). MS Thesis, Oregon State University, Corvallis, OR

    Google Scholar 

  • Gregory RS, Levings CD (1998) Turbidity reduces predation on migrating juvenile Pacific salmon. Trans Am Fish Soc 127(2):275–285

    Article  Google Scholar 

  • Hoffmaster JL, Sanders JE, Rohovec JS, Fryer JL, Stevens DG (1988) Geographic distribution of the myxosporean parasite, Ceratomyxa Shasta Noble, 1950, in the Columbia River basin, USA. J Fish Dis 11:97–100

    Article  Google Scholar 

  • Hughes RM, Davis GE (1986) Production of coexisting juvenile coho salmon and steelhead trout in heated model stream communities. In: Cairns J Jr (ed) Community toxicity testing. ASTM STP 920. American Society for Testing and Materials, Philadelphia, PA, p 322–337

    Google Scholar 

  • Jaensson A, OlsĂ©n KH (2010) Effects of copper on olfactory-mediated endocrine responses and reproductive behaviour in mature male brown trout Salmo trutta parr to conspecific females. J Biol 76:800–817

    CAS  Google Scholar 

  • Jarrard HE, Delaney KR, Kennedy CJ (2004) Impacts of carbamate pesticides on olfactory neurophysiology and cholinesterase activity in coho salmon (Oncorhynchus kisutch). Aquat Toxicol 69(2):133–148

    Article  CAS  PubMed  Google Scholar 

  • Jensen DW, Steel EA, Fullerton AH, Pess GR (2009) Impact of fine sediment on egg-to-fry survival of Pacific salmon: a meta-analysis of published studies. Rev Fish Sci 17(3):348–359

    Article  CAS  Google Scholar 

  • Johnson LL, Ylitalo GM, Sloan CA, Anulacion BF, Kagley AN, Arkoosh MR, Lundrigan TA, Larson K, Siipola M, Collier TK (2007) Persistent organic pollutants in outmigrant juvenile Chinook salmon from the lower Columbia estuary, USA. Sci Total Environ 374(2–3):342–366

    Article  CAS  PubMed  Google Scholar 

  • Keefer ML, Peery CA, Caudill CC (2008) Migration timing of Columbia River spring Chinook: effects of temperature, river discharge, and ocean environment. Trans Am Fish Soc 137:1120–1133

    Article  Google Scholar 

  • Keefer ML, Taylor GA, Garletts DF, Gauthier GA, Pierce TM, Caudill CC (2010) Prespawn mortality in adult spring Chinook salmon outplanted above barrier dams. Ecol Freshw Fish 2010:1–11

    Google Scholar 

  • Kemp P, Sear D, Collins A, Naden P, Jones I (2011) The impacts of fine sediment on riverine fish. Hydrol Process 25:1800–1821

    Article  Google Scholar 

  • Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, Flick RW (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci USA 104(21):8897–8901

    Article  CAS  PubMed  Google Scholar 

  • King KA, Grue CE, Grassely JM, Fisk RJ (2013) Pesticides in urban streams and early life states of Pacific coho salmon. Environ Toxicol Chem 32(4):920–931

    Article  CAS  PubMed  Google Scholar 

  • Kondolf GM (2000) Assessing salmonid spawning gravel quality. Trans Am Fish Soc 129(1):262–281

    Article  Google Scholar 

  • Korstrom JS, Birtwell IK (2006) Effects of suspended sediment on the escape behavior and cover-seeking response of juvenile Chinook salmon in freshwater. Trans Am Fish Soc 135(4):1006–1016

    Article  Google Scholar 

  • Loge FJ, Arkoosh MR, Ginn TR, Johnson LL, Collier TK (2005) Impact of environmental stressors on the dynamics of disease transmission. Environ Sci Technol 39(18):7329–7336

    Article  CAS  PubMed  Google Scholar 

  • Lohse KA, Newburn DA, Opperman JJ, Merenlender AM (2008) Forecasting relative impacts of land use on anadromous fish habitat to guide conservation planning. Ecol Appl 18(2):467–482

    Article  PubMed  Google Scholar 

  • Lorz HW, McPherson BP (1976) Effects of copper or zinc in fresh water on the adaptation to sea water and ATPase activity, and the effects of copper on migration disposition of coho salmon (Oncorhynchus kisutch). J Fish Res Board Can 33:2023–2030

    CAS  Google Scholar 

  • Lorz HW, Williams RH, Fustish CA (1978) Effects of metals on smolting of coho salmon. EPA-600/3-78-090. US Research Reporting Service, US Environmental Protection Agency, Corvallis, OR

    Google Scholar 

  • Madsen SS, Skovbølling S, Nielsen C, Korsgaard B (2004) 17-β estradiol and 4-nonylphenol delay smolt development and downstream migration in Atlantic salmon, Salmo salar. Aquat Toxicol 68(2):109–120

    Article  CAS  PubMed  Google Scholar 

  • Marine KR, Cech JJ Jr (2004) Effects of high water temperature on growth, smoltification, and predator avoidance in juvenile Sacramento River chinook salmon. N Am J Fish Manag 24:198–210

    Article  Google Scholar 

  • Materna E (2001) Issue paper 4: temperature interaction. Prepared as part of Region 10 Temperature Water Quality Criteria Guidance Development Project. EPA-910-D-01-004. US EPA, Seattle, Washington

    Google Scholar 

  • McCullough DA (1999) A review and synthesis of effects of alterations to the water temperature regime on freshwater life stages of salmonids, with special reference to chinook salmon. EPA 910-R-99-010. US Environmental Protection Agency, Seattle, Washington

    Google Scholar 

  • McCullough D, Spalding S, Sturdevant D, Hicks M (2001) Issue Paper 5: Summary of Technical Literature Examining the Physiological Effects of Temperature. EPA-910-D01-005. US Environmental Protection Agency, Seattle, Washington

    Google Scholar 

  • McIntyre JK, Baldwin DH, Beauchamp DA, Scholz NL (2012) Low-level copper exposures increase visibility and vulnerability of juvenile coho salmon to cutthroat trout predators. Ecol Appl 22(5):1460–1471

    PubMed  Google Scholar 

  • McNabb A, Schreck C, Tyler C, Thomas P, Kramer V, Specker J, Mayes M, Selcer K (1999) Chapter 3: basic physiology. In: DiGiulio RT, Tillitt DE (eds) Reproductive and developmental effects of contaminants in oviparous vertebrates. Society of Toxicology and Chemistry, Pensacola, FL, pp 113–223

    Google Scholar 

  • Meador JP, Sommers FC, Ylitalo GM, Sloan CA (2006) Altered growth and related physiological responses in juvenile Chinook salmon (Oncorhynchus tshawytscha) from dietary exposure to polycyclic aromatic hydrocarbons (PAHs). Can J Fish Aquat Sci 63(10):2364–2376

    Article  CAS  Google Scholar 

  • Meyer CB (2003) The importance of measuring biotic and abiotic factors in the lower egg pocket to predict coho salmon egg survival. J Fish Biol 62(3):534–548

    Article  Google Scholar 

  • Misumi I, Vella AT, Leong J-AC, Nakanishi T, Schreck CB (2005) p, p′-DDE depresses the immune competence of Chinook salmon (Oncorhynchus tshawytscha) leukocytes. Fish Shellfish Immunol 19(2):97–114

    Article  CAS  PubMed  Google Scholar 

  • Moscrip AL, Montgomery DR (1997) Urbanization, flood frequency, and salmon abundance in Puget lowland streams. J Am Water Resour Assoc 33(6):1289–1297

    Article  CAS  Google Scholar 

  • Newell JC, Fresh KL, Quinn TP (2007) Arrival patterns and movements of adult sockeye salmon in Lake Washington: implications for management of an urban fishery. N Am J Fish Manag 27(3):908–917

    Article  Google Scholar 

  • Oregon Department of Environmental Quality (ODEQ) (1995) Temperature: 1992–1994 water quality standards review. Final Issue Paper June 1995. Oregon Department of Environmental Quality, Standards and Assessment Section, Portland, OR

    Google Scholar 

  • Pess GR, Montgomery DR, Steel EA, Bilby RE, Feist BE, Greenburg HM (2002) Landscape characteristics, land use, and coho salmon (Oncorhynchus kisutch) abundance, Snohomish River, Wash., USA. Can J Fish Aquat Sci 59(4):613–623

    Article  Google Scholar 

  • Phillips RW, Lantz RL, Claire EW, Moring JR (1975) Some effects of gravel mixtures on emergence of coho salmon and steelhead trout fry. Trans Am Fish Soc 104:461–466

    Article  Google Scholar 

  • Quinn TP (2005) The behavior and ecology of pacific salmon and trout. University of Washington Press, Seattle, WA

    Google Scholar 

  • Rand PS, Hinch SG, Morrison J, Foreman MGG, MacNutt MJ, Macdonald JS, Healey MC, Farrell AP, Higgs DA (2006) Effects of river discharge, temperature, and future climates on energetics and mortality of adult migrating Fraser River sockeye salmon. Trans Am Fish Soc 135(3):655–667

    Article  Google Scholar 

  • Reeves GH, Everest FH, Hall JD (1987) Interactions between the redside shiner (Richardsonius balteaus) and the steelhead trout (Salmo gairdneri) in western Oregon: the influence of water temperature. Can J Fish Aquat Sci 44:1603–1613

    Article  Google Scholar 

  • Regetz J (2003) Landscape-level constraints on recruitment of Chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin, USA. Aquat Conserv 13(1):35–49

    Article  Google Scholar 

  • Robertson MJ, Scruton DA, Clarke KD (2007) Seasonal effects of suspended sediment on the behavior of juvenile Atlantic salmon. Trans Am Fish Soc 136(3):822–828

    Article  Google Scholar 

  • Roper BB, Scarnecchia DL (1999) Emigration of age-0 Chinook salmon (Oncorhynchus tshawytscha) smelts from the upper South Umpqua River basin, Oregon, USA. Can J Fish Aquat Sci 56(6):939–946

    Google Scholar 

  • Rosenthal H, Alderdice DF (1976) Sublethal effects of environmental stressors, natural and pollution, on marine fish eggs and larvae. J Fish Res Board Can 33:2047–2065

    CAS  Google Scholar 

  • Sandahl JF, Baldwin DH, Jenkins JJ, Scholz NL (2005) Comparative thresholds for acetylcholinesterase inhibition and behavioral impairment in coho salmon exposed to chlorpyrifos. Environ Toxicol Chem 24(1):136–145

    Article  CAS  PubMed  Google Scholar 

  • Sandahl JF, Baldwin DH, Jenkins JJ, Scholz NL (2007) A sensory system at the interface between urban stormwater runoff and salmon survival. Environ Sci Technol 41(8):2998–3004

    Article  CAS  PubMed  Google Scholar 

  • Sauter ST, McMillan J, Dunham J (2001) Salmonid behavior and water temperature. EPA-910-D-01-001. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Scholz NL, Truelove NK, Labenia JS, Baldwin DH, Collier TK (2006) Dose-additive inhibition of Chinook salmon acetylcholinesterase activity by mixtures of organophosphate and carbamate insecticides. Environ Toxicol Chem 25(5):1200–1207

    Article  CAS  PubMed  Google Scholar 

  • Scholz NL, Myers MS, McCarthy SG, Labenia JS, McIntyre JK, Ylitalo GM, Rhodes LD, Laetz CA, Stehr CM, French BL, McMillan B, Wilson D, Reed L, Lynch KD, Damm S, Davis JW, Collier TK (2011) Recurrent die-offs of adult coho salmon returning to spawn in Puget Sound lowland urban streams. PLoS One 6(12):e28013. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0028013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schreck CB, Contreras-Sanchez W, Fitzpatrick MS (2001) Effects of stress on fish reproduction, gamete quality, and progeny. Aquaculture 197:3–24

    Article  Google Scholar 

  • Schreck CB, Kent ML, Colvin ME, Benda S, Sharpe C, Peterson JT, Dolan B. (2013) Potential causes and management of prespawn mortality in adult upper Willamette River spring Chinook. Annual report, Portland District U.S Army Corps of Engineers, Portland, OR

    Google Scholar 

  • Servizi JA, Martens DW (1992) Sublethal responses of coho salmon (Oncorhynchus kisutch) to suspended sediments. Can J Fish Aquat Sci 49(7):1389–1395

    Article  Google Scholar 

  • Spromberg JA, Scholz NL (2011) Estimating the future decline of wild coho salmon populations resulting from early spawner die-offs in urbanizing watersheds of the Pacific Northwest, USA. Integr Environ Assess Manag. doi:10.1002/ieam.219

    PubMed  Google Scholar 

  • Stehr CM, Brown DW, Hom T, Anulacion BF, Reichert WL, Collier TK (2000) Exposure of juvenile Chinook and chum salmon to chemical contaminants in the Hylebos Waterway of Commencement Bay, Tacoma, Washington. J Aquat Ecosyst Stress Recov 7(3):215–227

    CAS  Google Scholar 

  • Suttle KB, Power ME, Levine JM, McNeely C (2004) How fine sediment in riverbeds impairs growth and survival of juvenile salmonids. Ecol Appl 14(4):969–974

    Article  Google Scholar 

  • Svendsen TC, Vorkamp K, Frederiksen M, Rønsholdt B, Frier J-O (2007) Body burdens of persistent halogenated compounds during different development stages of anadromous brown trout (Salmo trutta). Environ Sci Technol 41(17):5980–5985

    Article  CAS  PubMed  Google Scholar 

  • Tyler CR, Jobling S (2008) Roach, sex, and gender-bending chemicals: the feminization of wild fish in English rivers. Bioscience 58(11):1051–1059

    Article  Google Scholar 

  • Vajda AM, Barber LB, Gray JL, Lopez EM, Woodling JD, Norris DO (2008) Reproductive disruption in fish downstream from an estrogenic wastewater effluent. Environ Sci Technol 42:3407–3414

    Article  CAS  PubMed  Google Scholar 

  • Waite IR, Sobieszczyk S, Carpenter KD, Arnsberg AJ, Johnson HM, Hughes CA, Sarantou MJ, Rinella FA (2008) Effects of urbanization on stream ecosystems in the Willamette River basin and surrounding area, Oregon and Washington. Scientific Investigations Report 2006-5101-D. National Water-Quality Assessment Program, US Geological Survey, Washington, DC

    Google Scholar 

  • Warren CE (1971) Biology and water pollution control. W.B. Saunders, Philadelphia, PA

    Google Scholar 

  • Waters TF (1995) Sediment in streams: sources, biological effects, and control. Monograph 7. American Fisheries Society, Bethesda, Maryland

    Google Scholar 

  • Whittier TR, Hughes RM, Lomnicky GA, Peck DV (2007) Fish and amphibian tolerance values and an assemblage tolerance index for streams and rivers in the western USA. Trans Am Fish Soc 136:254–271

    Article  Google Scholar 

  • Wise A, O’Brien K, Woodruff T (2011) Are oral contraceptives a significant contributor to the estrogenicity of drinking water? Environ Sci Technol 45:51–60

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen G. Maas-Hebner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maas-Hebner, K.G., Hughes, R.M., Schreck, C.B. (2014). Wild Salmonids in the Urban Environment: Lethal and Sublethal Effects. In: Yeakley, J., Maas-Hebner, K., Hughes, R. (eds) Wild Salmonids in the Urbanizing Pacific Northwest. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8818-7_12

Download citation

Publish with us

Policies and ethics