Skip to main content

Vascular Inflammation in Ischemic Stroke: Adhesion Receptors Controlling Leukocyte–Endothelial Interactions

  • Chapter
  • First Online:
Immunological Mechanisms and Therapies in Brain Injuries and Stroke

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 6))

  • 1280 Accesses

Abstract

The contribution of leukocytes to the pathogenesis of ischemic stroke has been extensively studied and thoroughly documented. In this chapter, different aspects of leukocyte involvement in the lesion formation caused by ischemic stroke are highlighted, including the inflammatory agents that mediate leukocyte recruitment to the site of injury, the primary leukocyte populations that contribute to tissue damage, and the adhesion receptors that control leukocyte–endothelial cell interactions in post-ischemic brain. Agents that interfere with leukocyte recruitment in the brain are also addressed as potential therapeutic interventions for ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367:1747–57

    Article  PubMed  Google Scholar 

  2. Strong K, Mathers C, Bonita R (2007) Preventing stroke: saving lives around the world. Lancet Neurol 6:182–7

    Article  PubMed  Google Scholar 

  3. Murphy J (2003) Pharmacological treatment of acute ischemic stroke. Crit Care Nurs Q 26(4):276–82

    Article  PubMed  Google Scholar 

  4. Adams HP Jr, Brott TG, Crowell RM, Furlan AJ, Gomez CR, Grotta J, Helgason CM, Marler JR, Woolson RF, Zivin JA (1994) Guidelines for the management of patients with acute ischemic stroke: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Circulation 90:1588–601

    Article  PubMed  Google Scholar 

  5. Khaja AM, Grotta JC (2007) Established treatments for acute ischaemic stroke. Lancet 27:319–30

    Article  CAS  Google Scholar 

  6. Liesz A, Zhou W, Mracskó É, Karcher S, Bauer H, Schwarting S, Sun L, Bruder D, Stegemann S, Cerwenka A, Sommer C, Dalpke AH, Veltkamp R (2011) Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain 134:704–20

    Article  PubMed  Google Scholar 

  7. del Zoppo GJ (2010) Acute anti-inflammatory approaches to ischemic stroke. Ann N Y Acad Sci 1207:143–8

    Article  PubMed  CAS  Google Scholar 

  8. Yilmaz G, Granger DN (2010) Leukocyte recruitment and ischemic brain injury. Neuromolecular Med 12(2):193–204

    Article  PubMed  CAS  Google Scholar 

  9. Ziegler G, Freyer D, Harhausen D, Khojasteh U, Nietfeld W, Trendelenburg G (2011) Blocking TLR2 in vivo protects against accumulation of inflammatory cells and neuronal injury in experimental stroke. J Cereb Blood Flow Metab 31:757–66

    Article  PubMed  CAS  Google Scholar 

  10. Connolly ES Jr, Winfree CJ, Prestigiacomo CJ, Kim SC, Choudhri TF, Hoh BL, Naka Y, Solomon RA, Pinsky DJ (1997) Exacerbation of cerebral injury in mice that express the P-selectin gene: identification of P-selectin blockade as a new target for the treatment of stroke. Circ Res 81:304–10

    Article  PubMed  CAS  Google Scholar 

  11. Ishikawa M, Cooper D, Arumugam TV, Zhang JH, Nanda A, Granger DN (2004) Platelet-leukocyteendothelial cell interactions after middle cerebral artery occlusion and reperfusion. J Cereb Blood Flow Metab 24:907–15

    Article  PubMed  CAS  Google Scholar 

  12. Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H (2011) Programmed death-1 pathway limits central nervous system inflammation and neurologic deficits in murine experimental stroke. Stroke 42:2578–83

    Article  PubMed  Google Scholar 

  13. Barone FC, Schmidt DB, Hillegass LM, Price WJ, White RF, Feuerstein GZ, Clark RK, Lee EV, Griswold DE, Sarau HM (1992) Reperfusion increases neutrophils and leukotriene B4 receptor binding in rat focal ischemia. Stroke 23:1337–47

    Article  PubMed  CAS  Google Scholar 

  14. Choi IY, Lee JC, Ju C, Hwang S, Cho GS, Lee HW, Choi WJ, Jeong LS, Kim WK (2011) A3 adenosine receptor agonist reduces brain ischemic injury and inhibits inflammatory cell migration in rats. Am J Pathol 179:2042–52

    Article  PubMed  CAS  Google Scholar 

  15. Choi JS, Park J, Suk K, Moon C, Park YK, Han HS (2011) Mild hypothermia attenuates intercellular adhesion molecule-1 induction via activation of extracellular signal-regulated kinase-1/2 in a focal cerebral ischemia model. Stroke Res Treat 2011:846716

    PubMed  Google Scholar 

  16. Ritter LS, Orozco JA, Coull BM, McDonagh PF, Rosenblum WI (2000) Leukocyte accumulation and hemodynamic changes in the cerebral microcirculation during early reperfusion after stroke. Stroke 31:1153–61

    Article  PubMed  CAS  Google Scholar 

  17. Akopov SE, Simonian NA, Grigorian GS (1996) Dynamics of polymorphonuclear leukocyte accumulation in acute cerebral infarction and their correlation with brain tissue damage. Stroke 27:1739–43

    Article  PubMed  CAS  Google Scholar 

  18. Buck BH, Liebeskind DS, Saver JL, Bang OY, Yun SW, Starkman S, Ali LK, Kim D, Villablanca JP, Salamon N, Razinia T, Ovbiagele B (2008) Early neutrophilia is associated with volume of ischemic tissue in acute stroke. Stroke 39:355–60

    Article  PubMed  Google Scholar 

  19. Chen H, Chopp M, Bodzin G (1992) Neutropenia reduces the volume of cerebral infarct after transient middle cerebral artery occlusion in the rat. Neurosci Res Commun 11:93–9

    Google Scholar 

  20. Iadecola C, Alexander M (2001) Cerebral ischemia and inflammation. Curr Opin Neurol 14:89–94

    Article  PubMed  CAS  Google Scholar 

  21. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT (2009) Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J 276:13–26

    Article  PubMed  CAS  Google Scholar 

  22. Hayward NJ, Elliott PJ, Sawyer SD, Bronson RT, Bartus RT (1996) Lack of evidence for neutrophil participation during infarct formation following focal cerebral ischemia in the rat. Exp Neurol 139:188–202

    Article  PubMed  CAS  Google Scholar 

  23. Zhang RL, Chopp M, Chen H, Garcia JH (1994) Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. J Neurol Sci 125(1):3–10

    Article  PubMed  CAS  Google Scholar 

  24. Zhang RL, Chopp M, Li Y, Zaloga C, Jiang N, Jones ML, Miyasaka M, Ward PA (1994) Anti-ICAM-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat. Neurology 44:1747–51

    Article  PubMed  CAS  Google Scholar 

  25. Brait VH, Arumugam TV, Drummond GR, Sobey CG (2012) Importance of T lymphocytes in brain injury, immunodeficiency, and recovery after cerebral ischemia. J Cereb Blood Flow Metab 32:598–611

    Article  PubMed  CAS  Google Scholar 

  26. Clark RK, Lee EV, White RF, Jonak ZL, Feuerstein GZ, Barone FC (1994) Reperfusion following focal stroke hastens inflammation and resolution of ischemic injured tissue. Brain Res Bull 35:387–92

    Article  PubMed  CAS  Google Scholar 

  27. Kriz J (2006) Inflammation in ischemic brain injury: timing is important. Crit Rev Neurobiol 18:145–57

    Article  PubMed  CAS  Google Scholar 

  28. Yilmaz G, Arumugam TV, Stokes KY, Granger DN (2006) Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113:2105–12

    Article  PubMed  Google Scholar 

  29. Breckwoldt MO, Chen JW, Stangenberg L, Aikawa E, Rodriguez E, Qiu S, Moskowitz MA, Weissleder R (2008) Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci USA 105:18584–9

    Article  PubMed  CAS  Google Scholar 

  30. Connolly ES Jr, Winfree CJ, Springer TA, Naka Y, Liao H, Yan SD, Stern DM, Solomon RA, Gutierrez-Ramos JC, Pinsky DJ (1996) Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest 97:209–16

    Article  PubMed  CAS  Google Scholar 

  31. Stevens SL, Bao J, Hollis J, Lessov NS, Clark WM, Stenzel-Poore MP (2002) The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Res 932:110–9

    Article  PubMed  CAS  Google Scholar 

  32. Matsuo Y, Onodera H, Shiga Y, Nakamura M, Ninomiya M, Kihara T, Kogure K (1994) Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemia brain injury in the rat. Stroke 25:1469–75

    Article  PubMed  CAS  Google Scholar 

  33. Matsuo Y, Onodera H, Shiga Y, Shozuhara H, Ninomiya M, Kihara T, Tamatani T, Miyasaka M, Kogure K (1994) Role of cell adhesion molecules in brain injury after transient middle cerebral artery occlusion in the rat. Brain Res 656:344–52

    Article  PubMed  CAS  Google Scholar 

  34. Barone FC, Hillegass LM, Tzimas MN, Schmidt DB, Foley JJ, White RF, Price WJ, Feuerstein GZ, Clark RK, Griswold DE et al (1995) Time related changes in myeloperoxidase activity and leukotriene B4 receptor binding reflect leukocyte influx in cerebral focal stroke. Mol Chem Neuropathol 24:13–30

    Article  PubMed  CAS  Google Scholar 

  35. Jander S, Kraemer M, Schroeter M, Witte OW, Stoll G (1995) Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex. J Cereb Blood Flow Metab 15:42–51

    Article  PubMed  CAS  Google Scholar 

  36. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15:192–9

    Article  PubMed  CAS  Google Scholar 

  37. Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H (2011) CD4+FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metab Brain Dis 26:87–90

    Article  PubMed  CAS  Google Scholar 

  38. Ren X, Akiyoshi K, Dziennis S, Vandenbark AA, Herson PS, Hurn PD, Offner H (2011) Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J Neurosci 31:8556–63

    Article  PubMed  CAS  Google Scholar 

  39. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88:4651–5

    Article  PubMed  CAS  Google Scholar 

  40. Gidday JM, Park TS, Shah AR, Gonzales ER (1998) Modulation of basal and postischemic leukocyte-endothelial adherence by nitric oxide. Stroke 29:1423–9

    Article  PubMed  CAS  Google Scholar 

  41. Tan J, Town T, Mori T, Obregon D, Wu Y, DelleDonne A, Rojiani A, Crawford F, Flavell RA, Mullan M (2002) CD40 is expressed and functional on neuronal cells. EMBO J 21:643–52

    Article  PubMed  CAS  Google Scholar 

  42. Omari KM, Dorovini-Zis K (2003) CD40 expressed by human brain endothelial cells regulates CD4+ T cell adhesion to endothelium. J Neuroimmunol 134:166–78

    Article  PubMed  CAS  Google Scholar 

  43. Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R, Muller-Berghaus G, Kroczek RA (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391:591–4

    Article  PubMed  CAS  Google Scholar 

  44. Monaco C, Andreakos E, Young S, Feldmann M, Paleolog ET (2002) Cellmediated signaling to vascular endothelium: induction of cytokines, chemokines, and tissue factor. J Leukoc Biol 71:659–68

    PubMed  CAS  Google Scholar 

  45. Ishikawa M, Vowinkel T, Stokes KY, Arumugam TV, Yilmaz G, Nanda A, Granger DN (2005) CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion. Circulation 111:1690–6

    Article  PubMed  CAS  Google Scholar 

  46. Caolo V, Molin DG, Post MJ (2012) Notch regulation of hematopoiesis, endothelial precursor cells, and blood vessel formation: orchestrating the vasculature. Stem Cells Int 2012:805602

    PubMed  Google Scholar 

  47. Chi Z, Zhang J, Tokunaga A, Harraz MM, Byrne ST, Dolinko A, Xu J, Blackshaw S, Gaiano N, Dawson TM, Dawson VL (2012) Botch promotes neurogenesis by antagonizing Notch. Dev Cell 22(4):707–20

    Article  PubMed  CAS  Google Scholar 

  48. Arumugam TV, Chan SL, Jo DG, Yilmaz G, Tang SC, Cheng A, Gleichmann M, Okun E, Dixit VD, Chigurupati S, Mughal MR, Ouyang X, Miele L, Magnus T, Poosala S, Granger DN, Mattson MP (2006) Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nat Med 12:621–3

    Article  PubMed  CAS  Google Scholar 

  49. Carr MW, Roth SJ, Luther E, Rose SS, Springer TA (1994) Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci USA 91:3652–6

    Article  PubMed  CAS  Google Scholar 

  50. Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2:108–15

    Article  PubMed  CAS  Google Scholar 

  51. Xia M, Sui Z (2009) Recent developments in CCR2 antagonists. Expert Opin Ther Pat 19:295–303

    Article  PubMed  CAS  Google Scholar 

  52. Liu L, Kubes P (2003) Molecular mechanisms of leukocyte recruitment: organ-specific mechanisms of action. Thromb Haemost 89:213–20

    PubMed  CAS  Google Scholar 

  53. Barkalow FJ, Goodman MJ, Gerritsen ME, Mayadas TN (1996) Brain endothelium lack one of two pathways of P-selectin-mediated neutrophil adhesion. Blood 88:4585–93

    PubMed  CAS  Google Scholar 

  54. Granger DN, Stokes KY (2005) Differential regulation of leukocyte-endothelial cell interactions. In: Aird WC (ed) Endothelial cells in health and disease. Taylor & Francis, Boca Raton, FL, pp 229–43

    Chapter  Google Scholar 

  55. Zhang R, Chopp M, Zhang Z, Jiang N, Powers C (1998) The expression of P- and E-selectins in three models of middle cerebral artery occlusion. Brain Res 785(2):207–14

    Article  PubMed  CAS  Google Scholar 

  56. Stanimirovic D, Shapiro A, Wong J, Hutchison J, Durkin J (1997) The induction of ICAM-1 in human cerebromicrovascular endothelial cells (HCEC) by ischemia-like conditions promotes enhanced neutrophil/HCEC adhesion. J Neuroimmunol 76:193–205

    Article  PubMed  CAS  Google Scholar 

  57. Tamaru M, Tomura K, Sakamoto S, Tezuka K, Tamatani T, Narumi S (1998) Interleukin-1beta induces tissue- and cell type-specific expression of adhesion molecules in vivo. Arterioscler Thromb Vasc Biol 18(8):1292–303

    Article  PubMed  CAS  Google Scholar 

  58. Carvalho-Tavares J, Hickey MJ, Hutchison J, Michaud J, Sutcliffe IT, Kubes P (2000) A role for platelets and endothelial selectins in tumor necrosis factor-alphainduced leukocyte recruitment in the brain microvasculature. Circ Res 87:1141–8

    Article  PubMed  CAS  Google Scholar 

  59. Hu XM, Zhang Y, Zeng FD (2004) Effects of sodium beta-aescin on expression of adhesion molecules and migration of neutrophils after middle cerebral artery occlusion in rats. Acta Pharmacol Sin 25:869–75

    PubMed  CAS  Google Scholar 

  60. Zhang RL, Chopp M, Zhang ZG, Phillips ML, Rosenbloom CL, Cruz R, Manning A (1996) E-selectin in focal cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab 16:1126–36

    Article  PubMed  CAS  Google Scholar 

  61. Huang J, Choudhri TF, Winfree CJ, McTaggart RA, Kiss S, Mocco J, Kim LJ, Protopsaltis TS, Zhang Y, Pinsky DJ, Connolly ES Jr (2000) Postischemic cerebrovascular E-selectin expression mediates tissue injury in murine stroke. Stroke 31:3047–53

    Article  PubMed  CAS  Google Scholar 

  62. Mocco J, Choudhri T, Huang J, Harfeldt E, Efros L, Klingbeil C, Vexler V, Hall W, Zhang Y, Mack W, Popilskis S, Pinsky DJ, Connolly ES Jr (2002) HuEP5C7 as a humanized monoclonal anti-E/P-selectin neurovascular protective strategy in a blinded placebo-controlled trial of nonhuman primate stroke. Circ Res 91:907–14

    Article  PubMed  CAS  Google Scholar 

  63. Fassbender K, Mössner R, Motsch L, Kischka U, Grau A, Hennerici M (1995) Circulating selectin- and immunoglobulin-type adhesion molecules in acute ischemic stroke. Stroke 26(8):1361–4

    Article  PubMed  CAS  Google Scholar 

  64. Kasahara Y, Taguchi A, Uno H, Nakano A, Nakagomi T, Hirose H, Stern DM, Matsuyama T (2010) Telmisartan suppresses cerebral injury in a murine model of transient focal ischemia. Brain Res 1340:70–80

    Article  PubMed  CAS  Google Scholar 

  65. Love S, Barber R (2001) Expression of P-selectin and intercellular adhesion molecule-1 in human brain after focal infarction or cardiac arrest. Neuropathol Appl Neurobiol 27:465–73

    Article  PubMed  CAS  Google Scholar 

  66. Suzuki H, Abe K, Tojo SJ, Kitagawa H, Kimura K, Mizugaki M, Itoyama Y (1999) Reduction of ischemic brain injury by anti-P-selectin monoclonal antibody after permanent middle cerebral artery occlusion in rat. Neurol Res 21(3):269–76

    PubMed  CAS  Google Scholar 

  67. Jin AY, Tuor UI, Rushforth D, Kaur J, Muller RN, Petterson JL, Boutry S, Barber PA (2010) Reduced blood brain barrier breakdown in P-selectin deficient mice following transient ischemic stroke: a future therapeutic target for treatment of stroke. BMC Neurosci 11:12

    Article  PubMed  CAS  Google Scholar 

  68. Ruehl ML, Orozco JA, Stoker MB, McDonagh PF, Coull BM, Ritter LS (2002) Protective effects of inhibiting both blood and vascular selectins after stroke and reperfusion. Neurol Res 24:226–32

    Article  PubMed  CAS  Google Scholar 

  69. Htun P, Fateh-Moghadam S, Tomandl B, Handschu R, Klinger K, Stellos K, Garlichs C, Daniel W, Gawaz M (2006) Course of platelet activation and platelet-leukocyte interaction in cerebrovascular ischemia. Stroke 37:2283–7

    Article  PubMed  CAS  Google Scholar 

  70. Wei YS, Lan Y, Meng LQ, Nong LG (2011) The association of L-selectin polymorphisms with L-selectin serum levels and risk of ischemic stroke. J Thromb Thrombolysis 32:110–5

    Article  PubMed  CAS  Google Scholar 

  71. Yenari MA, Sun GH, Kunis DM, Onley D, Vexler V (2001) L-selectin inhibition does not reduce injury in a rabbit model of transient focal cerebral ischemia. Neurol Res 23:72–8

    Article  PubMed  CAS  Google Scholar 

  72. Arumugam TV, Salter JW, Chidlow JH, Ballantyne CM, Kevil CG, Granger DN (2004) Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion. Am J Physiol Heart Circ Physiol 287:H2555–60

    Article  PubMed  CAS  Google Scholar 

  73. Chen H, Chopp M, Zhang RL, Bodzin G, Chen Q, Rusche JR, Todd RF 3rd (1994) Anti-CD11b monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat. Ann Neurol 35:458–63

    Article  PubMed  Google Scholar 

  74. Fiszer U, Korczak-Kowalska G, Palasik W, Korlak J, Górski A, Członkowska A (1998) Increased expression of adhesion molecule CD18 (LFA-1beta) on the leukocytes of peripheral blood in patients with acute ischemic stroke. Acta Neurol Scand 97:221–4

    Article  PubMed  CAS  Google Scholar 

  75. Khan M, Sekhon B, Giri S, Jatana M, Gilg AG, Ayasolla K, Elango C, Singh AK, Singh I (2005) S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke. J Cereb Blood Flow Metab 25:177–92

    Article  PubMed  CAS  Google Scholar 

  76. Kim JS, Chopp M, Chen H, Levine SR, Carey JL, Welch KM (1995) Adhesive glycoproteins CD11a and CD18 are upregulated in the leukocytes from patients with ischemic stroke and transient ischemic attacks. J Neurol Sci 128:45–50

    Article  PubMed  CAS  Google Scholar 

  77. Prestigiacomo CJ, Kim SC, Connolly ES Jr, Liao H, Yan SF, Pinsky DJ (1999) CD18-mediated neutrophil recruitment contributes to the pathogenesis of reperfused but not nonreperfused stroke. Stroke 30:1110–7

    Article  PubMed  CAS  Google Scholar 

  78. Soriano SG, Coxon A, Wang YF, Frosch MP, Lipton SA, Hickey PR, Mayadas TN (1999) Mice deficient in Mac-1 (CD11b/CD18) are less susceptible to cerebral ischemia/reperfusion injury. Stroke 30:134–9

    Article  PubMed  CAS  Google Scholar 

  79. Okada Y, Copeland BR, Mori E, Tung MM, Thomas WS, del Zoppo GJ (1994) P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke 25:202–11

    Article  PubMed  CAS  Google Scholar 

  80. Lindsberg PJ, Carpén O, Paetau A, Karjalainen-Lindsberg ML, Kaste M (1996) Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke. Circulation 94:939–45

    Article  PubMed  CAS  Google Scholar 

  81. Chen H, Song YS, Chan PH (2009) Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. J Cereb Blood Flow Metab 29:1262–72

    Article  PubMed  CAS  Google Scholar 

  82. Ding YH, Young CN, Luan X, Li J, Rafols JA, Clark JC, McAllister JP 2nd, Ding Y (2005) Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion. Acta Neuropathol 109:237–46

    Article  PubMed  CAS  Google Scholar 

  83. Zhang RL, Zhang ZG, Chopp M, Zivin JA (1999) Thrombolysis with tissue plasminogen activator alters adhesion molecule expression in the ischemic rat brain. Stroke 30:624–9

    Article  PubMed  CAS  Google Scholar 

  84. Zhang RL, Zhang ZG, Chopp M (1999) Increased therapeutic efficacy with rt-PA and anti-CD18 antibody treatment of stroke in the rat. Neurology 52:273–9

    Article  PubMed  CAS  Google Scholar 

  85. Vemuganti R, Dempsey RJ, Bowen KK (2004) Inhibition of intercellular adhesion molecule-1 protein expression by antisense oligonucleotides is neuroprotective after transient middle cerebral artery occlusion in rat. Stroke 35:179–84

    Article  PubMed  CAS  Google Scholar 

  86. Brait VH, Jackman KA, Walduck AK, Selemidis S, Diep H, Mast AE, Guida E, Broughton BR, Drummond GR, Sobey CG (2010) Mechanisms contributing to cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and Nox2-derived superoxide. J Cereb Blood Flow Metab 30:1306–17

    Article  PubMed  CAS  Google Scholar 

  87. Hoyte LC, Brooks KJ, Nagel S, Akhtar A, Chen R, Mardiguian S, McAteer MA, Anthony DC, Choudhury RP, Buchan AM, Sibson NR (2010) Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia. J Cereb Blood Flow Metab 30:1178–87

    Article  PubMed  CAS  Google Scholar 

  88. Wang J, Zhao Y, Liu C, Jiang C, Zhao C, Zhu Z (2011) Progesterone inhibits inflammatory response pathways after permanent middle cerebral artery occlusion in rats. Mol Med Rep 4:319–24

    PubMed  CAS  Google Scholar 

  89. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM (1994) Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25:1794–8

    Article  PubMed  CAS  Google Scholar 

  90. Justicia C, Martín A, Rojas S, Gironella M, Cervera A, Panés J, Chamorro A, Planas AM (2006) Anti-VCAM-1 antibodies did not protect against ischemic damage either in rats or in mice. J Cereb Blood Flow Metab 26:421–32

    Article  PubMed  CAS  Google Scholar 

  91. Petrovic-Djergovic D, Hyman MC, Ray JJ, Bouis D, Visovatti SH, Hayasaki T, Pinsky DJ (2012) Tissue-resident ecto-5′ nucleotidase (CD73) regulates leukocyte trafficking in the ischemic brain. J Immunol 188(5):2387–98

    Article  PubMed  CAS  Google Scholar 

  92. Jin G, Tsuji K, Xing C, Yang YG, Wang X, Lo EH (2009) CD47 gene knockout protects against transient focal cerebral ischemia in mice. Exp Neurol 217:165–70

    Article  PubMed  CAS  Google Scholar 

  93. Wang X, Xu L, Wang H, Zhan Y, Puré E, Feuerstein GZ (2002) CD44 deficiency in mice protects brain from cerebral ischemia injury. J Neurochem 83:1172–9

    Article  PubMed  CAS  Google Scholar 

  94. Airas L, Lindsberg PJ, Karjalainen-Lindsberg ML, Mononen I, Kotisaari K, Smith DJ, Jalkanen S (2008) Vascular adhesion protein-1 in human ischaemic stroke. Neuropathol Appl Neurobiol 34:394–402

    Article  PubMed  CAS  Google Scholar 

  95. Kim JB, Sig Choi J, Yu YM, Nam K, Piao CS, Kim SW, Lee MH, Han PL, Park JS, Lee JK (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26:6413–21

    Article  PubMed  CAS  Google Scholar 

  96. Fujioka M, Nakano T, Hayakawa K, Irie K, Akitake Y, Sakamoto Y, Mishima K, Muroi C, Yonekawa Y, Banno F, Kokame K, Miyata T, Nishio K, Okuchi K, Iwasaki K, Fujiwara M, Siesjö BK (2012) ADAMTS13 gene deletion enhances plasma high-mobility group box1 elevation and neuroinflammation in brain ischemia-reperfusion injury. Neurol Sci 33:1107–15

    Article  PubMed  Google Scholar 

  97. Kim ID, Shin JH, Lee HK, Jin YC, Lee JK (2012) Intranasal delivery of HMGB1-binding heptamer peptide confers a robust neuroprotection in the postischemic brain. Neurosci Lett 525:179–83

    Article  PubMed  CAS  Google Scholar 

  98. Cao CX, Yang QW, Lv FL, Cui J, Fu HB, Wang JZ (2007) Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun 353:509–14

    Article  PubMed  CAS  Google Scholar 

  99. Yang QW, Li JC, Lu FL, Wen AQ, Xiang J, Zhang LL, Huang ZY, Wang JZ (2008) Upregulated expression of toll-like receptor 4 in monocytes correlates with severity of acute cerebral infarction. J Cereb Blood Flow Metab 28:1588–96

    Article  PubMed  CAS  Google Scholar 

  100. Shichita T, Hasegawa E, Kimura A, Morita R, Sakaguchi R, Takada I, Sekiya T, Ooboshi H, Kitazono T, Yanagawa T, Ishii T, Takahashi H, Mori S, Nishibori M, Kuroda K, Akira S, Miyake K, Yoshimura A (2012) Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med 18:911–7

    Article  PubMed  CAS  Google Scholar 

  101. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ, Iwakura Y, Yoshimura A (2009) Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15:946–50

    Article  PubMed  CAS  Google Scholar 

  102. Terao S, Yilmaz G, Stokes KY, Russell J, Ishikawa M, Kawase T, Granger DN (2008) Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation, and tissue injury after focal ischemia-reperfusion. Stroke 39:2560–70

    Article  PubMed  CAS  Google Scholar 

  103. Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29:1020–30

    Article  PubMed  CAS  Google Scholar 

  104. Gidday JM, Gasche YG, Copin JC, Shah AR, Perez RS, Shapiro SD, Chan PH, Park TS (2005) Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. Am J Physiol Heart Circ Physiol 289:H558–68

    Article  PubMed  CAS  Google Scholar 

  105. Belaaouaj A, Kim KS, Shapiro SD (2000) Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science 289:1185–8

    Article  PubMed  CAS  Google Scholar 

  106. Hermant B, Bibert S, Concord E, Dublet B, Weidenhaupt M, Vernet T, Gulino-Debrac D (2003) Identification of proteases involved in the proteolysis of vascular endothelium cadherin during neutrophil transmigration. J Biol Chem 278:14002–12

    Article  PubMed  CAS  Google Scholar 

  107. Ishikawa N, Oda M, Kawaguchi M, Tsunezuka Y, Watanabe G (2003) The effects of a specific neutrophil elastase inhibitor (ONO-5046) in pulmonary ischemia-reperfusion injury. Transpl Int 16:341–6

    Article  PubMed  CAS  Google Scholar 

  108. Ikegame Y, Yamashita K, Hayashi S, Yoshimura S, Nakashima S, Iwama T (2010) Neutrophil elastase inhibitor prevents ischemic brain damage via reduction of vasogenic edema. Hypertens Res 33:703–7

    Article  PubMed  CAS  Google Scholar 

  109. Frenkel D, Huang Z, Maron R, Koldzic DN, Moskowitz MA, Weiner HL (2005) Neuroprotection by IL-10-producing MOG CD4+ T cells following ischemic stroke. J Neurol Sci 233:125–32

    Article  PubMed  CAS  Google Scholar 

  110. Goussev AV, Zhang Z, Anderson DC, Chopp M (1998) P-selectin antibody reduces hemorrhage and infarct volume resulting from MCA occlusion in the rat. J Neurosci 161:16–22

    CAS  Google Scholar 

  111. Morikawa E, Zhang SM, Seko Y, Toyoda T, Kirino T (1996) Treatment of focal cerebral ischemia with synthetic oligopeptide corresponding to lectin domain of selectin. Stroke 27:951–5

    Article  PubMed  CAS  Google Scholar 

  112. Takeda H, Spatz M, Ruetzler C, McCarron R, Becker K, Hallenbeck J (2002) Induction of mucosal tolerance to E-selectin prevents ischemic and hemorrhagic stroke in spontaneously hypertensive genetically stroke-prone rats. Stroke 33:2156–63

    Article  PubMed  CAS  Google Scholar 

  113. Ishibashi S, Maric D, Mou Y, Ohtani R, Ruetzler C, Hallenbeck JM (2009) Mucosal tolerance to E-selectin promotes the survival of newly generated neuroblasts via regulatory T-cell induction after stroke in spontaneously hypertensive rats. J Cereb Blood Flow Metab 29:606–20

    Article  PubMed  CAS  Google Scholar 

  114. Yenari MA, Kunis D, Sun GH, Onley D, Watson L, Turner S, Whitaker S, Steinberg GK (1998) Hu23F2G, an antibody recognizing the leukocyte CD11/CD18 integrin, reduces injury in a rabbit model of transient focal cerebral ischemia. Exp Neurol 153(2):223–33

    Article  PubMed  CAS  Google Scholar 

  115. Bednar MM, Wright SD, Raymond-Russell SJ, Kohut JJ, Gross CE (1996) IB4, a monoclonal antibody against the CD18 leukocyte adhesion protein, reduces intracranial pressure following thromboembolic stroke in the rabbit. Neurol Res 18:171–5

    PubMed  CAS  Google Scholar 

  116. Mori E, del Zoppo GJ, Chambers JD, Copeland BR, Arfors KE (1992) Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke 23:712–8

    Article  PubMed  CAS  Google Scholar 

  117. Zhang L, Zhang ZG, Zhang RL, Lu M, Krams M, Chopp M (2003) Effects of a selective CD11b/CD18 antagonist and recombinant human tissue plasminogen activator treatment alone and in combination in a rat embolic model of stroke. Stroke 34:1790–5

    Article  PubMed  CAS  Google Scholar 

  118. Becker KJ (2002) Anti-leukocyte antibodies: LeukArrest (Hu23F2G) and Enlimomab (R6.5) in acute stroke. Curr Med Res Opin 18:18–22

    Article  Google Scholar 

  119. Jiang N, Chopp M, Chahwala S (1998) Neutrophil inhibitory factor treatment of focal cerebral ischemia in the rat. Brain Res 788:25–34

    Article  PubMed  CAS  Google Scholar 

  120. Krams M, Lees KR, Hacke W, Grieve AP, Orgogozo JM, Ford GA, ASTIN Study Investigators (2003) Acute Stroke Therapy by Inhibition of Neutrophils (ASTIN): an adaptive dose-response study of UK-279,276 in acute ischemic stroke. Stroke 34(11):2543–8

    Article  PubMed  CAS  Google Scholar 

  121. Jones R (2000) Rovelizumab (ICOS Corp). IDrugs 3:442–6

    PubMed  CAS  Google Scholar 

  122. Zhang RL, Chopp M, Jiang N, Tang WX, Prostak J, Manning AM, Anderson DC (1995) Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat. Stroke 26:1438–42, discussion 1443

    Article  PubMed  CAS  Google Scholar 

  123. Bowes MP, Rothlein R, Fagan SC, Zivin JA (1995) Monoclonal antibodies preventing leukocyte activation reduce experimental neurologic injury and enhance efficacy of thrombolytic therapy. Neurology 45:815–9

    Article  PubMed  CAS  Google Scholar 

  124. Enlimomab Acute Stroke Trial Investigators (2001) Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology 57:1428–34

    Article  Google Scholar 

  125. Furuya K, Takeda H, Azhar S, McCarron RM, Chen Y, Ruetzler CA, Wolcott KM, DeGraba TJ, Rothlein R, Hugli TE, del Zoppo GJ, Hallenbeck JM (2001) Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine anti-human intercellular adhesion molecule-1 antibody: a bedside-to-bench study. Stroke 32:2665–74

    Article  PubMed  CAS  Google Scholar 

  126. Vuorte J, Lindsberg PJ, Kaste M, Meri S, Jansson SE, Rothlein R, Repo H (1999) Anti-ICAM-1 monoclonal antibody R6.5 (Enlimomab) promotes activation of neutrophils in whole blood. J Immunol 162(4):2353–7

    PubMed  CAS  Google Scholar 

  127. Barone FC, Feuerstein GZ (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19(8):819–34

    Google Scholar 

  128. Arumugam TV, Cheng YL, Choi Y, Choi YH, Yang S, Yun YK, Park JS, Yang DK, Thundyil J, Gelderblom M, Karamyan VT, Tang SC, Chan SL, Magnus T, Sobey CG, Jo DG (2011) Evidence that gamma-secretase-mediated Notch signaling induces neuronal cell death via the nuclear factor-kappaB-Bcl-2-interacting mediator of cell death pathway in ischemic stroke. Mol Pharmacol 80(1):23–31

    Google Scholar 

  129. Schilling M, Strecker JK, Schäbitz WR, Ringelstein EB, Kiefer R (2009) Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience 161(3):806–12

    Google Scholar 

  130. Wang H, Zhan Y, Xu L, Feuerstein GZ, Wang X (2001) Use of suppression subtractive hybridization for differential gene expression in stroke: discovery of CD44 gene expression and localization in permanent focal stroke in rats. Stroke 32(4):1020–7

    Google Scholar 

  131. Gidday JM, Park TS, Gonzales ER, Beetsch JW (1997) CD18-dependent leukocyte adherence and vascular injury in pig cerebral circulation after ischemia. Am J Physiol 272(6 Pt 2):H2622–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Neil Granger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rodrigues, S.F., Granger, D.N. (2014). Vascular Inflammation in Ischemic Stroke: Adhesion Receptors Controlling Leukocyte–Endothelial Interactions. In: Chen, J., Hu, X., Stenzel-Poore, M., Zhang, J. (eds) Immunological Mechanisms and Therapies in Brain Injuries and Stroke. Springer Series in Translational Stroke Research, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8915-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8915-3_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8914-6

  • Online ISBN: 978-1-4614-8915-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics