Skip to main content

Meteorites, Asteroids and the Age and Origin of the Solar System

  • Chapter
  • First Online:
Solar System Astrophysics

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1732 Accesses

Abstract

In the previous chapter, we discussed sporadic meteors and meteor showers and indicated that some of the former and most of the latter likely originate from comets. Here we discuss the source of the other meteors, especially those that survive their fiery passage through the atmosphere and impact the Earth. These meteorites have become a primary source of knowledge about the age and origin of the solar system. Another important source is the increasing number of small bodies being detected in both the inner and the outer solar system, so we will also describe what has been learned about these objects in recent years. Finally we consider the birth of the solar system in the context of what we know about proto-stellar disks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The on-line catalogue of London’s Natural History Museum, provides updated numbers for specific groups of meteorites. At the time of writing, the updates were to 2002, Hereafter, we refer to this source as NHM (2002): http://www.nhm.ac.uk/research-curation/research/projects/metcat/search/metsPerGroup.dsml

  2. 2.

    The analogy is limited because the spectral subclasses are refinements to the main classification criteria that are primarily dependent on the temperature of the photosphere. Here, the numbers represent different groups of properties, not completely dependent on the chemical composition.

  3. 3.

    Classes (1) and (2) seem to have been subject to aqueous alteration, and (4) and (6) to alteration by heating.

  4. 4.

    The half-life is the time interval (t – t 0) at the end of which \( N/{N}_0={\scriptscriptstyle \frac{1}{2}} \), where N and N 0 are the numbers of radioactive nuclides at instants t and t 0, respectively. It is related to the decay constant λ, as follows: the decay equation is

    $$ \mathrm{d}N/N=-\lambda \mathrm{d}t $$
    (15.3)

    the integration of which yields \( N={N}_0{e}^{-\lambda \left(t-{t}_0\right)} \) so that ln(N/N 0) = − λ(t − t 0) and so when N/N 0 = 1/2, \( \lambda {\left(t-{t}_0\right)}_{\frac{1}{2}}= \ln 2 \). Then \( {\left(t-{t}_0\right)}_{\frac{1}{2}}=0.693/\lambda \), or \( \lambda =0.693/{\left(t-{t}_0\right)}_{\frac{1}{2}} \) and we obtain,

    $$ N={N}_0\kern0.35em \exp \left[-0.693\left(t-{t}_0\right)/{\left(t-{t}_0\right)}_{\frac{1}{2}}\right] $$
    (15.4)
  5. 5.

    The question about the origin of the SNC meteorites aroused considerable controversy in past decades. Wasson (1985, p. 79) states that the escape velocity (in m/s) from planetary bodies with the density of ordinary chondrites, ~3,500 kg/m3, is:

    $$ {v}_{esc}\approx 1.4R $$
    (15.5)

    where R is the planetary radius in meters. In general, this quantity is:

    $$ {v}_{esc}={v}_{parabolic}={\left[2 GM/R\right]}^{\frac{1}{2}}={\left[\left(8\pi G/3\right)\rho {R}^2\right]}^{\frac{1}{2}} $$
    (15.6)

    which indeed yields ~1.40 for the constant in Wasson’s equation, with his assumptions. Actually, the density of Mars is ~3,900 kg/m3, so the appropriate coefficient for Mars is ~1.48. He asserts that if an object impacts a planetary body at several times the escape velocity, the mass of the ejecta will exceed the mass of the object. Mars’ escape velocity is 5.01 km/s and it has a mean orbital velocity of about 24 km/s (26.5 at perihelion), so that an object approaching at a high enough velocity to result in ejection of Martian material would need a velocity within ~15 km/s of this orbital speed. Such a difference is certainly plausible. In any case, the chemical evidence for Martian origin is fairly persuasive, and taken together the arguments support a Martian origin for the SNC meteorites.

  6. 6.

    This is the ratio of the sidereal orbital periods: 3P Neptune = 2P Plutinos.

  7. 7.

    These quantities made may be thought of as incremental amounts per wavelength interval, thus: l λ = Δl/Δλ.

  8. 8.

    Coercivity measures the resistance that a ferromagnetic material offers to being demagnetized; e.g., permanent magnets are made from high-coercivity material (strongly resistant to being demagnetized).

  9. 9.

    For example, by Karttunen et al. (2003, pp. 146–148) or Zeilik and Gregory (1998, p. P12).

References

  • Alexandersen, M., Gladman, B., Greenstreet, S., Kavelaars, J.J., Petit, J.-M., and Gwyn, S.: A Uranian Trojan and the frequency of temporary giant-planet co-orbitals. Science 341 (6149) 994−997 (2013)

    Article  ADS  Google Scholar 

  • Alvarez, L.: Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980)

    Article  ADS  Google Scholar 

  • Asmar, S.W., Konopliv, A.S., Park, R.S., Raymond, C.A., Bills, B., Gaskell, R.W., Russell, C. T., Smith, D.E., Toplis, M., Zuber, M.T.: The gravity field of Vesta from Dawn. European Planetary Science Conference, Abstract EPSC 2012-814-1 (2012)

    Google Scholar 

  • Baer, J., Chesley, S.R., Matson, R.D.: Astrometric masses of 26 asteroids and observations on asteroid porosity. Astronom. J 141 (2011). doi: 10.1088/0004-6256/141/5/143 (12 pages)

  • Beck, A.W., McSween Jr., H.Y.: Diogenites as polymict breccias composed of orthopyroxenite and harzburgite. Meteor. Planet. Sci. 45(Nr 5), 850–872 (2010)

    Article  ADS  Google Scholar 

  • Bendjoya, P., Zappalà, V.: Asteroid family identification. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 613–618. University of Arizona Press, Arizona (2002)

    Google Scholar 

  • Bendjoya, P., Slezak, E., and Foreschle, C.: The wavelet transform: a new tool for asteroid family determination. Astron. & Astrophys 251, 312–330 (1991)

    ADS  MATH  Google Scholar 

  • Bertotti, B., Farinella, P., Vokrouhlicky, D.: Physics of the Solar System. Kluwer, Dordrecht (2003)

    Book  Google Scholar 

  • Binzel, R.P., Bus, S.J., Burbine, T.H.: The orbital distribution of Vesta-like asteroids. 30th Lunar and Planetary Science Conference, Houston, Texas, Abstract 1216 (1999)

    Google Scholar 

  • Binzel, R.P., Bus, S.J., Burbine, T.H.: Relating S-asteroids and ordinary chondrite meteorites: the new big picture. BAAS 30, 1041 (1998)

    ADS  Google Scholar 

  • Bogard, D.D., Garrison, D.H.: Relative abundances of Ar, Kr, and Xe in the Martian atmosphere as measured by Martian meteorites. Geochim. Cosmochim. Acta 62, 1829–1835 (1998)

    Article  ADS  Google Scholar 

  • Bogard, D.D., Garrison, D.H.: Argon 39-Argon 40 ‘ages’ and trapped Argon in Martian Shergottites, Chassigny, and Allen Hills 84001. Meteorit. Planet. Sci. 34, 451–473 (1999)

    Article  ADS  Google Scholar 

  • Borg, L.E., Edmunds, J.E., Asmerom, Y.: Constraints on the U–Pb isotopic systematics of Mars inferred from a combined U–Pb, Rb–Sr, and Sm-Nd isotopic study of the Martian meteorite Zagami. Geochim. Cosmochim. Acta 69, 5819–5830 (2005)

    Article  ADS  Google Scholar 

  • Boss, A.P.: Collapse and fragmentation of molecular cloud. II. Collapse induced by stellar shock waves. Astrophys. J. 439, 224–236 (1995)

    Article  ADS  Google Scholar 

  • Boss, A.P.: From molecular clouds to circumstellar disks. In: Festou, M.C., Keller, H.U., Weaver, H.A. (eds.) Comets II, pp. 67–80. University of Arizona Press, Tucson, AZ (2004)

    Google Scholar 

  • Brouwer, D.: Secular variations of the orbital elements of the minor planets. Astronom. J. 56, 9–32 (1951)

    Article  ADS  Google Scholar 

  • Brown, M.E., van Dam, M.A., Bouchez, A.H., Le Mignant, D., Campbell, R.D., Chin, J.C.Y., Conrad, A., Hartman, S.K., Johansson, E.M., Lafon, R.E., Rabinowitz, D.L., Stomski Jr., P.J., Summer, D.M., Trujillo, C.A., Wizinowich, P.L.: Satellites of the largest Kuiper Belt objects. Astrophys. J. 639, L43–L46 (2006)

    Article  ADS  Google Scholar 

  • Brož, M., Vokrouhlický, D.: Asteroid families in the first-order resonances with Jupiter. Month. Notice. R. Astronom. Soc. 390, 715–732 (2008)

    Article  ADS  Google Scholar 

  • Buratti, B.J., Dalba, P.A., Hicks, M.D., Reddy, V., Sykes, M.V., McCord, T.B., O’Brien, D.P., Pieters, C.M., Prettyman, T.H., McFadden, L.A., Nathues, A., Le Corre, L., Marchi, S., Raymond, C., Russell, C.T.: Vesta, Vestoids, and HEDs: Dawn, ground-based, and RELAB observations. 44th Lunar and Planetary Science Conference, Abstract 1845 (2013)

    Google Scholar 

  • Burbine, T.H., McCoy, T.J., Meibom, A., Gladman, B., Keil, K.: Meteoritic parent bodies: their number and identification. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 653–667. University of Arizona Press, Tucson, AZ (2002)

    Google Scholar 

  • Bus, S.J., Binzel, R.P.: Phase II of the small main-belt asteroid spectroscopy survey: a feature-based taxonomy. Icarus 158, 146–177 (2002)

    Article  ADS  Google Scholar 

  • Cameron, A.G.W., Truran, J.W.: The supernova trigger for formation of the solar system. Icarus 30, 447–461 (1977)

    Article  ADS  Google Scholar 

  • Chapman, C.R.: Asteroids. In: Beatty J.K., Chaikin A. (eds) The New Solar System, 3rd ed, pp. 231–240. Sky, Cambridge, MA; Press Syndicate of University of Cambridge, Cambridge, UK (1990)

    Google Scholar 

  • Chapman, C.R., Morrison, D., Zellner, B.: Surface properties of asteroids: a synthesis of polarimetry, radiometry, and spectrophotometry. Icarus 25, 104–130 (1975)

    Article  ADS  Google Scholar 

  • Clayton, R.N.: Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • Clayton, R.N., Mayeda, T.K.: The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth Planet. Sci. Lett. 67, 151–161 (1984)

    Article  ADS  Google Scholar 

  • Clayton, R.N., Mayeda, T.K.: Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta 60(11), 1999–2017 (1996)

    Article  ADS  Google Scholar 

  • Clayton, R.N., Mayeda, T.K., Goswami, J.N., Olsen, E.J.: Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta 55, 2317–2337 (1991)

    Article  ADS  Google Scholar 

  • De Sanctis, M.C., Ammannito, E., Capria, M.T., Tosi, F., Capaccioni, F., Zambon, F., Carraro, F., Fonte, S., Frigeri, A., Jaumann, R., Magni, G., Marchi, S., McCord, T.B., McFadden, L.A., McSween, H.Y., Mittlefehldt, D.W., Nathues, A., Palomba, E., Pieters, C.M., Raymond, C.A., Russell, C.T., Toplis, M.J., Turrini, D.: Spectroscopic characterization of mineralogy and its diversity across Vesta. Science 336, 697–700 (2012)

    Article  ADS  Google Scholar 

  • Delisle, J.-B., Laskar, J.: Chaotic diffusion of the Vesta family induced by close encounters with massive asteroids. Astronom. Astrophys. 540, A118 (2012). doi:10.1051/0004-6361/201118339 (8 pages)

    Article  ADS  Google Scholar 

  • Denevi, B.W., Blewett, D.T., Buczkowski, D.L., Capaccioni, F., Capria, M.T., De Sanctis, M.C., Garry, W.B., Gaskell, R.W., Le Corre, L., Li, J.-Y., Marchi, S., McCoy, T.J., Nathues, A., O’Brien, D.P., Petro, N.E., Pieters, C.M., Preusker, F., Raymond, C.A., Reddy, V., Russell, C.T., Schenk, P., Scully, J.E.C., Sunshine, J.M., Tosi, F., Williams, D.A., Wyrick, D.: Pitted terrain on Vesta and implications for the presence of volatiles. Science 338, 246–249 (2012)

    Article  ADS  Google Scholar 

  • Dones, L., Weissman, P.R., Levison, H.F., Duncan, M.J.: Oort cloud formation and dynamics. In: Festou, M.C., Keller, H.U., Weaver, H.A. (eds.) Comets II, pp. 153–174. University of Arizona Press, Tucson, AZ (2004)

    Google Scholar 

  • Drake, M.J., Swindle, T.D., Owen, T., Musselwhite, D.S.: Fractionated Martian atmosphere in the nakhlites? Meteoritics 29, 854–859 (1994)

    Article  ADS  Google Scholar 

  • Dunham, D.W., Bixby Dunham, J., et al.: The size and shape of (2) Pallas from the 1983 occultation of 1 Vulpeculae. Astronom. J. 99, 1636–1662 (1990)

    Article  ADS  Google Scholar 

  • Eugster, O., Weigel, A., Polnau, E.: Ejection times of Martian meteorites. Geochim. Cosmochim. Acta 61, 2749–2757 (1997)

    Article  ADS  Google Scholar 

  • Eugster, O., Herzog, G.F., Marti, K., Caffee, M.W.: Irradiation records, cosmic-ray exposure ages, and transfer times of meteorites. In: Lauretta, D.S., McSween Jr., H.Y. (eds.) Meteorites and the Early Solar System II, pp. 829–851. University of Arizona Press, Tucson, AZ (2006)

    Google Scholar 

  • Fessenkov, V.G.: Sikhoté-Aline meteorite. In: Kaiser, T.R. (ed.) Meteors, pp. 179–183. Pergamon, New York (1955)

    Google Scholar 

  • Froeschle, C., Hahn, G., Gonczi, R., Morbidelli, A., Farinella, P.: Secular resonances and the dynamics of Mars-crossing and near-Earth asteroids. Icarus 117, 45–61 (1995)

    Article  ADS  Google Scholar 

  • Fu, R.R., Weiss, B.P., Shuster, D.L., Gattacceca, J., Grove, T.L., Suavet, C., Lima, E.A., Li, L., Kuan, A.T.: An ancient core dynamo in asteroid Vesta. Science 338, 238–241 (2012)

    Article  ADS  Google Scholar 

  • Gauss, K.F.: Theoria motus corporum coelestium in sectionibus conicis solem ambientum (Hamburg: Perthes und Besser) tr., Davis, C. H. 1857. Theory of the motion of the heavenly bodies moving about the sun in conic sections (Boston: Little, Brown & Company). Original reprinting, 1981. In Werke, Bd. 7. 1–280. Georg Olms Verlag, Hildesheim/New York (1809)

    Google Scholar 

  • Gladman, B., Coffey, J.: Mercurian impact ejecta: meteorites and mantle. Meteorit. Planet. Sci. 44, 285–291 (2009)

    Article  ADS  Google Scholar 

  • Gounelle, M., Meibom, A.: The origin of short-lived radionuclides and the astrophysical environment of solar system formation. Astrophys. J. 680, 781–792 (2008)

    Article  ADS  Google Scholar 

  • Grady, M.M.: Catalogue of Meteorites, 5th edn. The Natural History Museum, London (2000). Updates available at: http://www.nhm.ac.uk/research-curation/research/projects/metcat/

    Google Scholar 

  • Henney, W.J., O’Dell, C.R.: A Keck high-resolution spectroscopic study of the Orion Nebula proplyds. Astronom. J. 118, 2350–2368 (1999)

    Article  ADS  Google Scholar 

  • Hewins, R.H.: Chondrules. Annu. Rev. Earth Planet. Sci. 25, 61–83 (1997)

    Article  ADS  Google Scholar 

  • Hirayama, K.: Groups of asteroids probably of common origin. Proc. Phys. Math. Soc. Japan Ser. 2(9), 354–361 (1918a)

    Google Scholar 

  • Hirayama, K.: Groups of asteroids probably of common origin. Astronom. J. 31, 185–188 (1918b)

    Article  ADS  Google Scholar 

  • Hodge, P.: Meteorite Craters and Impact Structures of the Earth. The University Press, Cambridge (1994)

    Google Scholar 

  • Hutchison, R.: Meteorites. University Press, Cambridge, UK (2004)

    Google Scholar 

  • Irving, A.J., Kuehner, S.M., Bunch, T.E., Ziegler, K., Chen, G., Herd, C.D.K., Conrey, R.M., Ralew, S.: Ungrouped mafic achondrite Northwest Africa 7325: a reduced, iron-poor cumulate Olivine Gabbro from a differentiated planetary body. 44th Lunar and Planetary Science Conference, The Woodlands, Texas. Abstract 2164 (2013)

    Google Scholar 

  • Jaumann, R., Williams, D.A., Buczkowski, D.L., Yingst, R.A., Preusker, F., Hiesinger, H., Schmedemann, N., Kneissl, T., Vincent, J.B., Blewett, D.T., Buratti, B.J., Carsenty, U., Denevi, B.W., De Sanctis, M.C., Garry, W.B., Keller, H.U., Kersten, E., Krohn, K., Li, J.-Y., Marchi, S., Matz, K.D., McCord, T.B., McSween, H.Y., Mest, S.C., Mittlefehldt, D.W., Mottola, S., Nathues, A., Neukum, G., O’Brien, D.P., Pieters, C.M., Prettyman, T.H., Raymond, C.A., Roatsch, T., Russell, C.T., Schenk, P., Schmidt, B.E., Scholten, F., Stephan, K., Sykes, M.V., Tricarico, P., Wagner, R., Zuber, M.T., Sierks, H.: Vesta’s shape and morphology. Science 336, 687–690 (2012)

    Article  ADS  Google Scholar 

  • Jewitt, D., Luu, J.: Physical nature of the Kuiper belt. In: Mannings, V., Boss, A.P., Russell, S.S. (eds.) Protostars and Planets IV, pp. 1201–1229. University of Arizona Press, Tucson, AZ (2000)

    Google Scholar 

  • Jewitt, D., Agarwal, J., Weaver, H., Mutchler, M., Larson, S.: The extraordinary multi-tailed Main-Belt Comet P/2013 P5. Astrophys. J. Letters 778: L21 (4pp) (2013)

    Google Scholar 

  • Joy, K.H., Crawford, I.A., Russell, S.S., Swinyard, B., Kellett, B., Grande, M.: Lunar Regolith Breccias MET01210, PCA02007 and DAG400: their importance in understanding the lunar surface and implications for the scientific analysis of D-CIXS data. Lunar Planet. Sci. 37(1274 Suppl), 5221 (2006)

    Google Scholar 

  • Karlsson, H.R., Clayton, R.N., Gibson Jr., E.K., Mayeda, T.K.: Water in SNC meteorites: evidence for a Martian hydrosphere. Science 255, 1409–1411 (1992)

    Article  ADS  Google Scholar 

  • Karttunen, H., Kroger, P., Oja, H., Poutanen, M., Donner, K.J. (eds.): Fundamental Astronomy. Springer, Berlin (2003)

    Google Scholar 

  • Kelley, D.H., Milone, E.F.: Exploring Ancient Skies, 2nd edn. Springer, New York (2011)

    Book  Google Scholar 

  • Kirsten, T.: Time and the solar system. In: Dermott, S.F. (ed.) Origin of the Solar System, pp. 267–346. Wiley, New York (1978)

    Google Scholar 

  • Lindblad, B.A., Southworth, R.B.: A study of asteroid families and streams by computer techniques. In: Gehrels, T. (ed.) Physical Studies of Minor Planets, pp. 338–352. NASA SP 267, Washington, DC (1971)

    Google Scholar 

  • Liu, Y., Nyquist, L., Wiesmann, H., Shih, C., Schwandt, C., Takeda, H.: Internal Rb-Sr age and initial 87Sr/86Sr of a silicate inclusion from the Campo Del Cielo iron meteorite. Lunar Planet. Sci. XXXIV (2003)

    Google Scholar 

  • Marti, K., Kim, J.S., Thakur, A.N., McCoy, T.J., Keil, K.: Signatures of the Martian atmosphere in glass of the Zagami meteorite. Science 267, 1981–1984 (1995)

    Article  ADS  Google Scholar 

  • Matsumura, S., Pudritz, R.E., Thommes, E.W.: Saving planetary systems: dead zones and planetary migration. Astrophys. J. 660, 1609–1623 (2007)

    Article  ADS  Google Scholar 

  • Meaburn, J.: An extended high-speed flow from a compact, ionized knot in the Orion Nebula (M42). Month. Notice. R. Astronom. Soc. 233, 791–800 (1988)

    ADS  Google Scholar 

  • Milone, E.F., Wilson, W.J.F.: Solar System Astrophysics: Background Science and the Inner Solar System, 2nd edn. Springer, New York (2014)

    Book  Google Scholar 

  • Morbidelli, A., Brown, M.E.: The Kuiper belt and the primordial evolution of the solar system. In: Festou, M.C., Keller, H.U., Weaver, H.A. (eds.) Comets II, pp. 175–191. University of Arizona Press, Tucson, AZ (2004)

    Google Scholar 

  • Morbidelli, A., Bottke Jr., W.F., Froeschlé, C., Michel, P.: Origin and evolution of near-Earth objects. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 409–422. University of Arizona Press, Tucson, AZ (2002)

    Google Scholar 

  • Moser, D.E., Chamberlain, K.R., Tait, K.T., Shmitt, A.K., Darling, J.R., Barker, J.R., Hyde, B.C.: Solving the Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon. Nature 499 doi:10.1038/nature12341 (2013)

    Google Scholar 

  • O’Dell, C.R., Wen, Z.: Postrefurbishment mission Hubble Space Telescope images of the Orion Nebula: proplyds, Herbig-Haro objects, and measurement of a circumstellar disk. Astrophys. J. 436, 194–202 (1994)

    Article  ADS  Google Scholar 

  • Pinson Jr., W.H., Schnetzler, C.C., Beiser, E., Fairbairn, H.W., Hurley, P.M.: Rb-Sr age of stony meteorites. Geochim. Cosmochim. Acta 29, 455–466 (1965)

    Article  ADS  Google Scholar 

  • Righter, K., Gruener, J.: The Lunar Meteorite Compendium (2012). http://www-curator.jsc.nasa.gov/antmet/lmc/index.cfm

  • Russell, C.T., Raymond, C.A., Coradini, A., McSween, H.Y., Zuber, M.T., Nathues, A., De Sanctis, M.C., Jaumann, R., Konopliv, A.S., Preusker, F., Asmar, S.W., Park, R.S., Gaskell, R., Keller, H.U., Mottola, S., Roatsch, T., Scully, J.E.C., Smith, D.E., Tricarico, P., Toplis, M.J., Christensen, U.R., Feldman, W.C., Lawrence, D.J., McCoy, T.J., Prettyman, T.H., Reedy, R.C., Sykes, M.E., Titus, T.N.: Dawn at Vesta: testing the protoplanetary paradigm. Science 336, 684–686 (2012)

    Article  ADS  Google Scholar 

  • Sears, D.W.G., Dodd, R.T.: Meteorites and the Early Solar System. University of Arizona Press, Tucson, AZ (1988)

    Google Scholar 

  • Shimoda, G., Nakamura, N., Kimura, M., Kani, T., Nohda, S., Yamamoto, K.: Evidence from the Rb-Sr system for 4.4 Ga alteration of chondrules in the Allende (CV3) parent body. Meteorit. Planet. Sci. 40(Nr 7), 1059–1072 (2005)

    Article  ADS  Google Scholar 

  • Smith, B.A., Terrile, R.J.: A circumstellar disk around Beta Pictoris. Science 226, 1421–1424 (1984)

    Article  ADS  Google Scholar 

  • Tatsumoto, M., Unruh, D.M., Desborough, G.A.: U-Th-Pb and Rb-Sr systematics of Allende and U-Th-Pb systematics of Orgueil. Geochim. Cosmochim. Acta 40, 617–634 (1976)

    Google Scholar 

  • Taylor, S.R.: Solar System Evolution: A New Perspective. University Press, Cambridge (1992)

    Google Scholar 

  • Taylor, A.D., Baggaley, W.J., Steel, D.I.: Discovery of interstellar dust entering the Earth's atmosphere. Nature 380, 323–325 (1996)

    Article  ADS  Google Scholar 

  • Tholen, D.J.: Asteroid taxonomic classifications. In: Binzel, R.P., Gehrels, T., Matthews, M.S. (eds.) Asteroids II, pp. 1139–1150. University of Arizona Press, Tucson, AZ (1989)

    Google Scholar 

  • Treiman, A.H., Gleason, J.D., Bogard, D.D.: The SNC meteorites are from Mars. Planet. Space Sci. 48, 1213–1230 (2000)

    Article  ADS  Google Scholar 

  • Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F.: Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005)

    Article  ADS  Google Scholar 

  • Urey, H.C., Craig, H.: The composition of stone meteorites and the origin of the meteorites. Geochim. Cosmochim. Acta 4, 36–82 (1953)

    Article  ADS  Google Scholar 

  • Van Schmus, W.R., Wood, J.A.: A chemical-petrologic classification for the chondritic meteorites. Geochim. Cosmochim. Acta 31, 747–765 (1967)

    Article  ADS  Google Scholar 

  • Wasson, J.T.: Meteorites: Their Record of Early Solar System History. Freeman, New York (1985)

    Google Scholar 

  • Wetherill, G.W., Chapman, C.R.: Asteroids and meteorites. In: Kerridge, J.F., Matthews, M.S. (eds.) Meteorites and the Early Solar System, pp. 35–67. The University of Arizona Press, Tucson, AZ (1988)

    Google Scholar 

  • Williams, J.P., Cieza, L.A.: Protoplanetary disks and their evolution. Annu. Rev. Astronom. Astrophys. 49, 67–117 (2011)

    Article  ADS  Google Scholar 

  • Wlotzka, F.: A weathering scale for the ordinary chondrites. Meteoritics 28, 460 (1993)

    ADS  Google Scholar 

  • Wood, J.A.: Meteorites and the Origin of Planets. McGraw-Hill, New York (1968)

    Google Scholar 

  • Wood, J.A.: Meteorites. In: Beatty, J.K., Chaikin, A. (eds) The New Solar System, 3rd ed., pp. 241–250. Sky, Cambridge, MA; Press Syndicate of University of Cambridge, Cambridge, UK) (1990)

    Google Scholar 

  • Zappalà, V., Cellino, A., Farinella, P., Knezevic, Z.: Asteroid families. I. Identification by hierarchical clustering and reliability assessment. Astronom. J. 100, 2030–2046 (1990)

    Article  ADS  Google Scholar 

  • Zeigler, R.A., Korotev, R.L., Jolliff, B.L., Haskin, L.A.: Petrography of lunar meteorite MET 01210. Lunar and Planetary Science, XXXVI, Abstract No. 2385 (2005)

    Google Scholar 

  • Zeilik, M., Gregory, S.A.: Introductory Astronomy and Astrophysics. Saunders College Publishing, Fort Worth, TX (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Challenges

Challenges

  1. [15.1]

    Discuss how points along the plot of the ratios 87Sr/86Sr vs. 87Rb/86Sr change with time. What do we mean by “time” here anyway? (See Fig. 15.6)

  2. [15.2]

    Examine the validity of equations (15.5) and (15.6), defining all quantities, and evaluate the dynamic evidence that SNC meteorites come from Mars. Assume the correctness of Wasson’s assertion that an impactor with substantially greater speed than υ may result in planetary mass loss.

  3. [15.3]

    Summarize the different types of ages that a meteorite can have and associate each with a stage of a meteorite’s history.

  4. [15.4]

    Examine the list of the principal types of asteroids and their associated meteorites. What can you conclude about the origin of those meteorites.

  5. [15.5]

    Discuss what meteorites could be expected from cometary impact on Earth and on meteoroids or their parent bodies. Do we have any evidence that such impacts occur in any known meteorite specimens?

  6. [15.6]

    Describe the time-line of the development stages of the material in the Zagami meteorite from the original aggregation of elements to the fall and recovery.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milone, E.F., Wilson, W.J.F. (2014). Meteorites, Asteroids and the Age and Origin of the Solar System. In: Solar System Astrophysics. Astronomy and Astrophysics Library. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9090-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9090-6_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9089-0

  • Online ISBN: 978-1-4614-9090-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics