Skip to main content

Random Perturbations

  • Chapter
  • First Online:
Mathematics as a Laboratory Tool
  • 1792 Accesses

Abstract

Up to this point, our “mathematics in the laboratory” approach to the investigation of biological systems has been very simplistic. We have assumed that very complex biological systems, ranging from ecosystems to the human brain, can be adequately described by measuring changes in just a few variables. Moreover, we have ignored the fact that all living dynamical systems are continuously subjected to large numbers of influences. For example, it has been estimated that a typical neuron in the human brain receives ≈ 104 synaptic connections from other neurons [597].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term independent means that a change in one variable does not lead to a change in other variables. We will give a more formal definition in Section 12.2.

  2. 2.

    Juan Luis Cabrera (PhD 1997), Venezuelan condensed matter biophysicist.

  3. 3.

    The ability of a bacterium to change its phenotype to achieve evolutionary advantage is reminiscent of a similar ability that has been observed in Homo sapiens, which has been known to change its hair color.

  4. 4.

    S = { H, T} is standard mathematical notation for the set S consisting of the elements H and T.

  5. 5.

    Technically, the probability is defined on the sigma field or algebra of the sample space (for an introduction, see [488]).

  6. 6.

    Achilles (fl. ca. 1250 b.c.e.), Greek hero of the Trojan War. According to legend, his only physical vulnerability was his heel, and he is said to have been killed in the Trojan War by Paris, who shot him in the heel with an arrow.

  7. 7.

    The Gaussian distribution is just one of a multitude of mathematical concepts (including the gauss, the cgs unit of magnetic field strength) named after Johann Carl Friedrich Gauss (1777–1855), German mathematician.

  8. 8.

    James Clerk Maxwell (1831–1879), Scottish mathematical physicist; Ludwig Eduard Boltzmann (1844–1906), Austrian physicist and philosopher.

  9. 9.

    Andrzej Aleksander Lasota (1932–2006), Polish mathematician.

  10. 10.

    Paul Pierre Lévy (1886–1971), French mathematician who introduced many concepts in probability theory used in this book, including alpha-stable distributions and Lévy flights.

  11. 11.

    Keep in mind that this statement is true when the mean values have been removed before the distributions are added.

  12. 12.

    Augustin–Louis Cauchy (1789–1857), French mathematician.

  13. 13.

    For Matlab programmers, a very useful software package has been developed by M. Veillette. It is freely downloadable from the Internet site http://math.bu.edu/people/mveillet/html/alphastablepub.html. Similar tools for Python have been developed within the package PyLevy.

  14. 14.

    The reader should keep in mind that correlation does not imply causality.

  15. 15.

    The functions xcorr() and acorr() take care of the fast Fourier transform part of the calculation of the autocorrelation and the padding with zeros. The option normed = True in xcorr() ensures that the autocorrelation function is normalized by the variance to give K xx (Δ).

  16. 16.

    It should be noted that mathematicians and investigators working in communication theory often use the two-sided power spectrum [35]. In this case, we have, for example,

    $$\displaystyle{\hat{w}(f) =\int _{ -\infty }^{\infty }c_{xx}(\varDelta )\cos (2\pi f\varDelta )\,d\varDelta = 2\int _{ 0}^{\infty }c_{xx}(\varDelta )\cos (2\pi f\varDelta )\,d\varDelta.}$$

    However, the use of the one-sided power spectrum is favored in the stochastic signal literature.

  17. 17.

    Leonard Salomon Ornstein (1880–1941), Dutch physicist; George Eugene Uhlenbeck (1900–1988), Dutch–American theoretical physicist.

  18. 18.

    It seems more reasonable to define colored noise as noise that is not delta-correlated. However, in current usage of the term, colored noise does not include exponentially correlated noise.

  19. 19.

    The major exception occurs when the two functions are not correlated, and hence C xy (Δ) = 0 for all Δ.

References

  1. R. L. Anderson. Distribution of the serial correlation coefficient. Ann. Math. Stat., 13:1–13, 1942.

    Article  MATH  Google Scholar 

  2. Y. Asai, S. Tateyama, and T. Nomura. Learning an intermittent control strategy for postural balancing using an EMG-based human computer interface. PLoS ONE, 8:e62956, 2013.

    Article  Google Scholar 

  3. N. T. J. Bailey. The elements of stochastic processes. John Wiley & Sons, New York, 1990.

    MATH  Google Scholar 

  4. P. Ball. The physical modelling of human social systems. Complexus, 1:190–206, 2004.

    Article  Google Scholar 

  5. J. S. Bendat and A. G. Piersol. Random data: Analysis and measurement procedures, 2nd ed. John Wiley & Sons, New York, 1986.

    MATH  Google Scholar 

  6. J. L. Cabrera and J. G. Milton. On–off intermittency in a human balancing task. Phys. Rev. Lett., 89:158702, 2002.

    Article  Google Scholar 

  7. J. L. Cabrera and J. G. Milton. Human stick balancing: Tuning Lévy flights to improve balance control. CHAOS, 14:691–698, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. L. Cabrera and J. G. Milton. On–off intermittency and survival times. Nonlinear Studies, 11:305–317, 2004.

    MathSciNet  MATH  Google Scholar 

  9. P. J. Choi, L. Cai, K. Fieda, and X. S. Xie. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science, 322:442–446, 2008.

    Article  Google Scholar 

  10. T. Cluff and R. Balasubramanian. Motor learning characterized by changing Lévy distributions. PLoS ONE, 4:e5998, 2009.

    Article  Google Scholar 

  11. B. J. Cole. Is animal behavior chaotic? Evidence from the activity of ants. Proc. R. Sovc. Lond. B, 244: 253–259, 1991.

    Article  Google Scholar 

  12. K. Cranmer. Kernel estimation in high-energy physics. Comput. Phys. Commun., 136:198–207, 2001.

    Article  MATH  Google Scholar 

  13. W. B. Davenport and W. L. Root. An introduction to the theory of random signals and noise. IEEE Press, New York, 1987.

    Book  Google Scholar 

  14. A. Diniz, M. L. Wijnants, K. Torre, J. Barreiros, N. Crato, A. M. T. Bosman, F. Hasselman, R. E. A. Cox, G. C. van Order, and D. Delognières. Contemporary theories of 1∕f noise in motor control. Human Movement Science, 30:895–905, 2011.

    Article  Google Scholar 

  15. M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain. Stochastic gene expression in a single cell. Science, 297:1183–1186, 2002.

    Article  Google Scholar 

  16. M. Evans, N. Hastings, and B. Peacock. Statistical distributions, 2nd ed. Wiley-Interscience, New York, 1993.

    MATH  Google Scholar 

  17. A. A. Faisal, L. P. Selen, and D. M. Wolpert. Noise in the nervous system. Nature Rev., 9:292–303, 2008.

    Article  Google Scholar 

  18. P. Fatt and B. Katz. Some observations on biological noise. Nature, 166:597–598, 1950.

    Article  Google Scholar 

  19. C. W. Gardiner. Handbook of stochastic methods for physics, chemistry and the natural sciences. Springer-Verlag, New York, 1990.

    MATH  Google Scholar 

  20. L. Garrido and A. Juste. The determination of probability density functions by using neural networks. Comp. Phys. Commun., 115:25–31, 1998.

    Article  Google Scholar 

  21. Y. Y. Grinberg, J. G. Milton, and R. P. Kraig. Spreading depression sends microglia on Lévy flights. PLoS ONE, 6:e19294, 2011.

    Article  Google Scholar 

  22. H. M. Gupta and J. R. Campanha. The gradually truncated Lévy flight for systems with power-law distributions. Physica A, 268:231–239, 1999.

    Article  Google Scholar 

  23. H. M. Gupta and J. R. Campanha. The gradually truncated Lévy flight: stochastic process for complex systems. Physica A, 275:531–543, 2000.

    Article  Google Scholar 

  24. P. Guptasarma. Does the replication-induced transcription regulate synthesis of the myriad low number proteins in Escherichia coli? Bioassays, 17:987–997, 1995.

    Article  Google Scholar 

  25. J. Hausdorff and C. Peng. Multiscaled randomness: A possible source of 1∕f noise in biology. Phys. Rev. E, 54:2154–2157, 1996.

    Article  Google Scholar 

  26. D. Helbing, P. Molnár, I. J. Farkas, and K. Bolay. Self-organizing pedestrian movement, Environment and Planning B: Planning and design, 28: 361–383, 2001.

    Article  Google Scholar 

  27. L. F. Henderson. The statistics of crowd fluids, Nature, 229: 381–383, 1971.

    Article  Google Scholar 

  28. T. Insperger and J. Milton. Sensory uncertainty and stick balancing at the fingertip. Biol. Cybern., 108:85–101, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. M. Jenkins and D. G. Watts. Spectral analysis and its applications. Emerson–Adams Press, Inc., Boca Raton, Florida, 1969.

    Google Scholar 

  30. M. Kaern, T. C. Elston, W. J. Blake, and J. J. Collins. Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet., 6:451–464, 2005.

    Article  Google Scholar 

  31. A. Kamimura and T. Ohira. Group chase and escape. New J. Physics, 12:053013, 2010.

    Article  Google Scholar 

  32. N. G. Van Kampen. Stochastic processes in physics and chemistry, 3rd ed. Elsevier, New York, 2007.

    Google Scholar 

  33. S. Kogan and D. Williams. Characteristic function based estimation of stable parameters. In R. Adler, R. Feldman, and M. Tagga, editors, A practical guide to heavy tailed data, pp. 311–338, Boston, Birkhäuser, 1998.

    Google Scholar 

  34. I. Koponen. Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E, 52:1197–1199, 1995.

    Article  Google Scholar 

  35. A. Lasota and M. C. Mackey. Chaos, fractals, and noise: Stochastic aspects of dynamics. Springer-Verlag, New York, 1994.

    Book  MATH  Google Scholar 

  36. S. V. F. Levy, C. Tsallis, A. M. C. Souza, and R. Maynard. Statistical-mechanical foundation of the ubiquity of Lévy distributions in nature. Phys. Rev. Lett., 75:3589–3593, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  37. E. Libby and P. B. Rainey. Exclusion rules, bottlenecks and the evolution of stochastic phenotype switching. Proc. R. Soc. B, 278:3574–3583, 2011.

    Article  Google Scholar 

  38. A. Likas. Probability density estimation using artificial neural networks. Comp. Phys. Commun., 135:167–175, 2001.

    Article  MATH  Google Scholar 

  39. D. K. C. MacDonald. Noise and fluctuations: An introduction. John Wiley and Sons, New York, 1962.

    Google Scholar 

  40. R. N. Mantegna and H. E. Stanley. Scaling behavior in the dynamics of an economic index. Nature (London), 376:46–49, 1995.

    Google Scholar 

  41. J. Milton. Dynamics of small neural populations. American Mathematical Society, Providence, Rhode Island, 1996.

    MATH  Google Scholar 

  42. J. G. Milton. The delayed and noisy nervous system: Implications for neural control. J. Neural Eng., 8:065005, 2011.

    Article  Google Scholar 

  43. J. G. Milton. Intermittent motor control: The “drift-and-act” hypothesis. In M. J. Richardson, M. Riley, and K. Shockley, editors, Progress in Motor Control: Neural, computational and dynamic approaches, pp. 169–193, New York, 2013. Springer.

    Google Scholar 

  44. J. G. Milton, J. L. Cabrera, and T. Ohira. Unstable dynamical systems: Delays, noise and control. Europhys. Lett., 83:48001, 2008.

    Article  MathSciNet  Google Scholar 

  45. J. G. Milton, T. Ohira T, J. L. Cabrera, R. M. Fraiser, J. B. Gyorffy, F. K. Ruiz, M. A. Strauss, E. C. Balch, P. J. Marin, and J. L. Alexander. Balancing with vibration: A prelude for “drift and act” balance control. PLoS ONE, 4:e7427, 2009.

    Google Scholar 

  46. J. G. Milton, J. L. Townsend, M. A. King, and T. Ohira. Balancing with positive feedback: the case for discontinuous control. Phil. Trans. R. Soc. A, 367:1181–1193, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  47. J Mitlon, J. L. Cabrera, T. Ohira, S. Tajima, Y. Tonosaki, C. W. Eurich, and S. A. Campbell. The time–delayed inverted pendulum: Implications for human balance control. Chaos, 19:026110, 2009.

    Google Scholar 

  48. F. Moss. Stochastic resonance: From the ice ages to the monkey’s ear. In G. H. Weiss, editor, Some problems in statistical physics, pp. 205–253, Philadelphia, 1994. SIAM Frontiers in Applied Mathematics.

    Google Scholar 

  49. M. Moussaid, D. Helbing, and G. Theraulaz. How simple rules determine pedestrian behavior and crowd disasters, Proc. Natl. Acad. Sci. USA, 108: 6884–6888, 2011.

    Article  Google Scholar 

  50. T. Musha, S. Sato, and M. Yamamoto. Noise in physical systems and 1∕f fluctuations. IOS Press, Kyoto, Japan, 1992.

    Google Scholar 

  51. A. Papoulis. Probability, random variables and stochastic processes. McGraw–Hill, New York, 1965.

    MATH  Google Scholar 

  52. E. Parzen. On the estimation of a probability density function and mode. Ann. Math. Stat., 33:1065–1076, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  53. E. Parzen. Stochastic processes. SIAM, Philadelphia, 1999.

    Book  MATH  Google Scholar 

  54. R. J. Polge and E. M. Mitchell. Impulse response determination by cross correlation. IEEE Trans. Aerospace Elec. Sys., 6:91–97, 1970.

    Article  Google Scholar 

  55. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes: The art of scientific computing, 3rd ed. Cambridge University Press, New York, 2007.

    Google Scholar 

  56. G. A. Prieto, R. L. Parker, and F. L. Vernon III. A Fortran 90 library for multitaper spectrum analysis. Computers & Geosciences, 35:1701–1710, 2009.

    Article  Google Scholar 

  57. C. V. Rao, D. M. Wolf, and A. P. Arkin. Control, exploitation and tolerance of intracellular noise. Nature, 420:231–237, 2002.

    Article  Google Scholar 

  58. J. M. Raser and E. K. O’Shea. Control of stochasticity in eukaryotic gene expression. Science, 304:1811–1814, 2004.

    Article  Google Scholar 

  59. D. Sornette. Critical phenomena in natural sciences: Chaos, fractals, selforganization and disorder: Concepts and tools. Springer, New York, 2004.

    Google Scholar 

  60. G. Stepan. Delay effects in the human sensory system during balancing. Phil. Trans. Roy. Soc. A, 367:1195–1212, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  61. C. F. Stevens. How cortical interconnectedness varies with network size. Neural Comp., 1:473–479, 1965.

    Article  Google Scholar 

  62. D. Sul, P. C. B. Phillips, and C-Y. Choi. Prewhitening bias in HAC estimation. Oxford Bull. Econ. Stat., 67:517–546, 2005.

    Google Scholar 

  63. N. N. Taleb. The black swan: The impact of the highly improbable. Random House, New York, 2007.

    Google Scholar 

  64. S. M. Ulam and J. von Neumann. On combination of stochastic and deterministic processes. Bull. Am. Math. Soc., 53:1120, 1947.

    Google Scholar 

  65. G. C. van Orden, J. G. Holden, and M. T. Turvey. Human cognition and 1∕f scaling. J. Exp. Psychol. Gen., 134:117–122, 2005.

    Article  Google Scholar 

  66. A. A. Verveen and L. J. DeFelice. Membrane noise. Prog. Biophys. Mol. Biol., 28:189–265, 1974.

    Article  Google Scholar 

  67. R. M. Warner. Spectral analysis of time-series data. Guilford Press, New York, 1998.

    Google Scholar 

  68. R. Weron. Lévy-stable distributions revisited: Tail index \(> 2\) does not exclude the Lévy-stable regime. Int. J. Mod. Phys. C, 12:209–223, 2001.

    Article  Google Scholar 

  69. J. Yu. Empirical characteristic function estimation and its applications. Econometric Rev., 23:93–123, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  70. V. M. Zolotarev. One-dimensional stable distributions. Amer. Math. Soc., Providence, RI, 1986.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milton, J., Ohira, T. (2014). Random Perturbations. In: Mathematics as a Laboratory Tool. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9096-8_12

Download citation

Publish with us

Policies and ethics