Skip to main content

Proteases as Clinical Markers of Adverse Remodeling for Heart Failure in the Aging Population

  • Chapter
  • First Online:
Role of Proteases in Cellular Dysfunction

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 8))

  • 1255 Accesses

Abstract

The heart failure (HF) burden, the aging population at large, and the aging population with HF have been increasing concurrently in developed countries worldwide. Epidemiological studies have warned that this trend will continue and lead to bankruptcy in health care unless new effective strategies and therapeutic targets are introduced. Translational studies have shown that adverse left ventricular (LV) remodeling is the principal mechanism for the march to HF after myocardial infarction (MI) and hypertension (HTN), the leading causes of HF in the elderly population aged ≥65 years. Evidence indicates that proteases play an important role in the remodeling that occurs at the extracellular as well as cellular, subcellular, and molecular levels and the march to HF. Besides the matrix metalloproteinases (MMPs) that play a critical role in extracellular matrix (ECM) and LV remodeling, several other proteases have also been implicated in adverse LV remodeling and dysfunction and the march to HF after MI, HTN, and cardiomyopathies. Several are released in the blood and can be imaged in the myocardium. Proteases are therefore attractive as potential clinical markers of adverse remodeling for HF in the aging population, not just for tools in diagnosis and follow-up but also in guiding therapy and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lloyd-Jones D, Adams RJ, Brown TM et al (2010) Heart Disease and Stroke Statistics - 2010 Update: A Report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 121:e46-e215

    PubMed  Google Scholar 

  2. Roger VL, Go AS, Lloyd-Jones DM et al (2012) Heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation 125:e2-e220.

    PubMed  Google Scholar 

  3. Hunt SA, Abraham WT, Chin MH et al (2009) 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119:e391-479

    PubMed  Google Scholar 

  4. Jessup M, Abraham WT, Casey DE et al (2009) focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 119:1977-2016

    PubMed  Google Scholar 

  5. McMurray J, Adamopoulos S, Anker S et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012- The task force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 14:803-869

    PubMed  CAS  Google Scholar 

  6. Jugdutt BI (2010) Aging and Heart Failure: changing demographics and implications for therapy in the elderly. Heart Fail Rev;15:401-405

    PubMed  Google Scholar 

  7. Jugdutt BI (2010) Heart Failure in the elderly: advances and challenges. Expert Rev Cardiovasc Ther 8:695-715

    PubMed  Google Scholar 

  8. Alexander KP, Newby LK, Armstrong PW et al, American Heart Association Council on Clinical Cardiology; Society of Geriatric Cardiology (2007) Acute coronary care in the elderly, Part II. ST-segment-elevation myocardial infarction. A scientific statement for healthcare professionals from the American Heart Association Council for Clinical Cardiology. Circulation 115:2570-2589

    Google Scholar 

  9. Paulus WJ, Tschöpe C, Sanderson JE et al (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28:2539-2550

    PubMed  Google Scholar 

  10. Dickstein K, Cohen-Solal A, Filippatos G et al (2008) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Eur J Heart Fail 10:933-89

    PubMed  Google Scholar 

  11. Aronow WS, Fleg JL, Pepine CJ et al (2011) ACCF/AHA 2011 expert consensus document on hypertension in the elderly. J Am Coll Cardiol 57:2037-2114

    PubMed  Google Scholar 

  12. Ho KK, Pinsky JL, Kannel WB, Levy D (1993) The epidemiology of heart failure: the Framingham study. J Am Coll Cardiol 22:6A-13A

    PubMed  CAS  Google Scholar 

  13. Stevenson LW (2011) Projecting heart failure into bankruptcy in 2012? Am Heart J 161:1007-1011

    PubMed  Google Scholar 

  14. Jugdutt BI (2003). Ventricular remodeling post-infarction and the extracellular collagen matrix. When is enough enough? Circulation 108:1395-1403

    PubMed  Google Scholar 

  15. Jugdutt BI (2003) Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Current Drug Targets, Cardiovasc & Haemat Disorders 3:1-30.

    CAS  Google Scholar 

  16. Jugdutt BI (2008) Aging and remodeling during healing of the wounded heart: current therapies and novel drug targets. Curr Drug Targets 9:325-344

    PubMed  CAS  Google Scholar 

  17. Muller AL, Dhalla AL (2012) Role of various proteases in cardiac remodeling and progression of heart failure. Heart Fail Rev 17:395-409

    PubMed  CAS  Google Scholar 

  18. Jugdutt BI (2011) Modulators of remodeling after myocardial infarction. In, Molecular Defects in Cardiovascular Disease. Dhalla NS, Nagano M, Ostadal B, eds. Springer media, Inc. New York, 2011, pp 231-242

    Google Scholar 

  19. Jugdutt BI, Jelani A (2013) Aging and markers of adverse remodeling after myocardial infarction. In, Cardiac remodeling. Molecular mechanisms. Ed Jugdutt BI, Dhalla NS. Springer, New York, 2013, pp 487-512

    Google Scholar 

  20. Jugdutt BI (2006) Matrix metalloproteinases as markers of adverse remodeling after myocardial infarction. J Card Fail 12:73-76

    PubMed  CAS  Google Scholar 

  21. Jugdutt BI, Michorowski B (1987) Role of infarction expansion in rupture of the ventricular septum after acute myocardial infarction. A two-dimensional echocardiography study. Clin Cardiol 10:641-652

    PubMed  CAS  Google Scholar 

  22. Jugdutt BI, Warnica JW (1988) Intravenous nitroglycerin therapy to limit myocardial infarct size, expansion and complications: effect of timing, dosage and infarct location. Circulation 78:906-919

    PubMed  CAS  Google Scholar 

  23. Jugdutt BI, Basualdo CA (1989) Myocardial infarct expansion during indomethacin and ibuprofen therapy for symptomatic post-infarction pericarditis: Effect of other pharmacologic agents during early remodelling. Can J Cardiol 5:211-221

    PubMed  CAS  Google Scholar 

  24. Jugdutt BI (1990) Identification of patients prone to infarct expansion by the degree of regional shape distortion on an early two-dimensional echocardiogram after myocardial infarction. Clin Cardiol 13:28-40

    PubMed  CAS  Google Scholar 

  25. Pfeffer MA, Braunwald E (1990) Ventricular remodelling after myocardial infarction. Circulation 81:1161-1172

    PubMed  CAS  Google Scholar 

  26. Jugdutt BI (1993) Prevention of ventricular remodelling post myocardial infarction: Timing and duration of therapy. Can J Cardiol 9:103-114

    PubMed  CAS  Google Scholar 

  27. Gaudron P, Eilles C, Kugler I et al (1993) Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation 87:755-763

    PubMed  CAS  Google Scholar 

  28. Jugdutt BI (1996) Prevention of ventricular remodeling after myocardial infarction and in congestive heart failure. Heart Fail Rev 1:115-129

    Google Scholar 

  29. Carabello BA (2002) Concentric versus eccentric remodeling. J Cardiac Fail 8(6 Suppl):S258-S263

    Google Scholar 

  30. Spinale FG (2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 90:520-530

    PubMed  CAS  Google Scholar 

  31. Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285-1342

    PubMed  CAS  Google Scholar 

  32. Jugdutt BI, Khan MI (1992) Impact of increased infarct transmurality on remodeling and function during healing after anterior myocardial infarction in the dog. Can J Physiol Pharmacol. 70:949-958

    PubMed  CAS  Google Scholar 

  33. Jugdutt BI, Tang SB, Khan MI et al (1992) Functional impact on remodeling during healing after non-Q-wave versus Q-wave anterior myocardial infarction in the dog. J Am Coll Cardiol 20:722-731

    PubMed  CAS  Google Scholar 

  34. Jugdutt BI, Jelani A, Palaniyappan A et al (2010) Aging-related changes in markers of ventricular and matrix remodelling after reperfused ST-segment elevation myocardial infarction in the canine model. Effect of early therapy with an angiotensin II type 1 receptor blocker. Circulation 122:341-351

    PubMed  CAS  Google Scholar 

  35. Jugdutt BI, Amy RW (1986) Healing after myocardial infarction in the dog: Changes in infarct hydroxyproline and topography. J Am Coll Cardiol 7:91-102

    PubMed  CAS  Google Scholar 

  36. Jugdutt BI, Joljart MJ, Khan MI (1996) Rate of collagen deposition during healing after myocardial infarction in the rat and dog models: mechanistic insights into ventricular remodeling. Circulation 94:94-101

    PubMed  CAS  Google Scholar 

  37. Bolognese L, Neskovic AN, Parodi G et al (2002) Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 106:2351-2357

    PubMed  Google Scholar 

  38. Man J, Tymchak W, Jugdutt BI (2010) Adjunctive pharmacologic treatment for acute myocardial infarction. In, Textbook of Cardiac Intensive Care, 2nd edition. Brown DL, Jeremias A (eds). Philadelphia, Elsevier, pp 1-72

    Google Scholar 

  39. Jugdutt BI (2012) Prevention of heart failure in the elderly: when, where and how to begin? Heart Fail Rev 17:531-544

    PubMed  Google Scholar 

  40. Jelani A, Jugdutt BI (2010) STEMI and heart failure in the elderly: role of adverse remodeling. Heart Fail Rev 15:513-521

    PubMed  Google Scholar 

  41. Weber KT (1997) Extracellular matrix remodeling in heart failure. A role for de novo angiotensin II generation. Circulation 96:4065-4082

    PubMed  CAS  Google Scholar 

  42. Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31-47

    PubMed  CAS  Google Scholar 

  43. Jugdutt BI (1985) Delayed effects of early infarct-limiting therapies on healing after myocardial infarction. Circulation 72:907-914

    PubMed  CAS  Google Scholar 

  44. Jugdutt BI (2006) Valsartan in the treatment of heart attack survivors. Vasc Health Risk Manag 2:125-138

    PubMed  CAS  Google Scholar 

  45. Jugdutt BI (2007) Cyclooxygenase inhibition and ventricular remodeling after acute myocardial infarction. Circulation 115:288-289

    PubMed  Google Scholar 

  46. Jugdutt BI (2008) Pleiotropic effects of cardiac drugs on healing post MI. The good, bad and ugly. Heart Fail Rev 13:439-452

    PubMed  Google Scholar 

  47. Protein structure and function (2008). Chapter 3, In, Molecular Cell Biology, 6th edition. Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudaira P (eds). New York, WH Freeman and Company, pp 63-110

    Google Scholar 

  48. Rodriguez D, Morrison CJ, Overall CM (2010) Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteinomics. Biochim Biophys Acta 1803:39-54

    PubMed  CAS  Google Scholar 

  49. Yang D, Ma S, Tan Y et al (2010) Increased expression of calpain and elevated activity of calcineurin in the myocardium of patients with congestive heart failure. Int J Mol Med 26:159-164

    PubMed  CAS  Google Scholar 

  50. Jin D, Takai S, Sakagushi M et al (2004) An antiarrhythmic effect of chymase inhibitor after myocardial infarction. J Pharmacol Exp Ther 309:490-497

    PubMed  CAS  Google Scholar 

  51. Jahanyar J, Youker KA, Loebe M et al (2007) Mast cell-derived cathepsin G: a possible role in adverse remodeling of the failing human heart. J Surg Res 140:199-203

    PubMed  CAS  Google Scholar 

  52. Zidar N, Jera J, Maja J, Dusan S (2007) Caspases in myocardial infarction. Adv Clin Chem 44:1-33

    PubMed  CAS  Google Scholar 

  53. Lutgens SP, Cleutjens KB, Daemen MJ, Heeneman S (2007) Cathepsin cysteine proteases in cardiovascular disease. FASEB J 21:3029-3041

    PubMed  CAS  Google Scholar 

  54. Kar P, Samanta K, Shaikh S et al (2010) Mitochondrial calpain system: an overview. Arch Biochem Biophys 495:1-7

    PubMed  CAS  Google Scholar 

  55. Marques AJ, Palanimurugan R, Matias AC, Ramos PC, Dohmen RJ (2009) Catalytic mechanism and assembly of the proteasome. Chem Rev 109:1509-1536

    PubMed  CAS  Google Scholar 

  56. Lopez B, Gonzalez A, Querejeta R, Larman M, Diez J (2006) Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. J Am Coll Cardiol 48:89-96

    PubMed  CAS  Google Scholar 

  57. Kandasamy AD, Chow AK, Ali MA, Schulz R (2010) Matrix metallo-proteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85:413-423

    PubMed  CAS  Google Scholar 

  58. Leger AJ, Covic L, Kuliopulos A (2006) Protease-activated receptors in cardiovascular disease. Circulation 114:1070-1077

    PubMed  CAS  Google Scholar 

  59. Sukhova GK, Schonbeck U, Rabkin E et al (1999) Evidence for increased collagenolysis by interstitial collagenase-1 and −3 in vulnerable human atherosclerotic plaques. Circulation 99:2503-2509

    PubMed  CAS  Google Scholar 

  60. Boire A, Covic L, Agarwal A et al (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells . Cell 120:303-313

    PubMed  CAS  Google Scholar 

  61. Dai E, Guan H, Liu L et al (2003) Serp-1, a viral anti-inflammatory serpin, regulates cellular serine proteinase and serpin responses to vascular injury. J Biol Chem 278: 18563-18572

    PubMed  CAS  Google Scholar 

  62. Bot I, Jan H, von der Thusen et al (2003) Serine protease inhibitor Serp-1 strongly impairs atherosclerotic lesion formation and induces a stable plaque phenotype in ApoE −/− mice. Circ Res 93:464-471

    Google Scholar 

  63. Rodriguez WE, Tyagi N, Deng AY et al (2008) Congenic expression of tissue inhibitor of metalloproteinase in Dahl-salt sensitive hypertensive rats is associated with reduced LV hypertrophy. Arch Physiol Biochem 114:340-348

    PubMed  CAS  Google Scholar 

  64. Yang D, Ma S, Tan Y et al (2010) Increased expression of calpain and elevated activity of calcineurin in the myocardium of patients with congestive heart failure. Int J Mol Med 26:159-164

    PubMed  CAS  Google Scholar 

  65. Saitoh T, Nakajima T, Takahashi T, Kawahara K (2006) Changes in cardiovascular function on treatment of inhibitors of apoptotic signaling pathways in left ventricular remodeling after myocardial infarction. Cardiovasc Pathol 15:130-138

    PubMed  CAS  Google Scholar 

  66. Yoshida H, Takahashi M, Koshimizu M et al (2003) Decrease in sarcoglycans and dystrophin in failing heart following acute myocardial infarction. Cardiovasc Res 59: 419-427

    PubMed  CAS  Google Scholar 

  67. Letavernier E, Zafrani L, Perez J et al (2012) The role of calpains in myocardial remodeling and heart failure. Cardiovasc Res 96:38-45

    PubMed  CAS  Google Scholar 

  68. Choi KM, Lee JS, Kim EJ et al (2008) Implication of lipocalin-2 and visfatin levels in patients with coronary artery disease. Eur J Endocrinol 158:203-207

    PubMed  CAS  Google Scholar 

  69. Aigner F, Maier HT, Schwelberger HG et al (2007) Lipocalin-2 regulates the inflammatory response during ischemia and reperfusion of the transplanted heart. Am J Transplant 7:779-788

    PubMed  CAS  Google Scholar 

  70. Xu G, Ahn J, Chang S et al (2011) lipocalin-2 induces cardiomyocyte apoptosis by increasing intracellular iron accumulation. J Biol Chem 287:4808-4817

    PubMed  Google Scholar 

  71. Michalopoulou H, Michalopoulou H, Stamatis P et al (2013) Assessment of neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury in acute heart failure patients. Critical Care 17(Suppl 2):P425

    Google Scholar 

  72. Cruz DN, Gaiao S, Maisel A et al (2012) Neutrophil gelatinase-associated lipocalin as a biomarker of cardiovascular disease: a systematic review. Clin Chem Lab Med 50:1533-1545

    PubMed  CAS  Google Scholar 

  73. Bolignano D, Basile G, Parisi P et al (2009) Increased plasma neutrophil gelatinase-associated lipocalin levels predict mortality in elderly patients with chronic heart failure. Rejuvenation Res 12:7-14

    PubMed  CAS  Google Scholar 

  74. Nymo SH, Ueland T, Askevold ET et al (2012) The association between neutrophil gelatinase-associated lipocalin and clinical outcome in chronic heart failure: results from CORONA. J Intern Med 271:436-443

    PubMed  CAS  Google Scholar 

  75. Orn S, Manhenke C, Anand IS et al (2007) Effect of left ventricular scar size, location, and transmurality on left ventricular remodeling with healed myocardial infarction. Am J Cardiol 99:1109-1114

    PubMed  Google Scholar 

  76. Orn S, Manhenke C, Greve OJ et al (2009) Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention. Eur Heart J 30:1978-1985

    PubMed  Google Scholar 

  77. Ørn S, Manhenke C, Ueland T et al (2009) C-reactive protein, infarct size, microvascular obstruction, and left-ventricular remodelling following acute myocardial infarction. Eur Heart J 30:1180-1186

    PubMed  Google Scholar 

  78. Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: Protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437-2445

    PubMed  Google Scholar 

  79. Palaniyappan A, Uweira RRE, Idikio H et al (2013) Attenuation of increased leukocyte protease inhibitor, matricellular proteins and angiotensin II and left ventricular remodeling by candesartan and omapatrilat during healing after reperfused myocardial infarction. Mol Cell Biochem 376:175-188

    PubMed  CAS  Google Scholar 

  80. Weber KT (1989) Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 13:1637-1652

    PubMed  CAS  Google Scholar 

  81. Kanekar S, Hirozanne T, Terracio L, Borg T (1998) Cardiac fibroblasts: form and function. Cardiovasc Pathol 7:127-133

    Google Scholar 

  82. Nagase H, Visse R, Murphy G (2006) Structure and function of Matrix metalloproteinases and TIMPs. Cardiovasc Research 69:562-573

    CAS  Google Scholar 

  83. Nagase H, Woessner Jr JF (1999) Matrix metalloproteinases. J Biol Chem 274:5578-5582

    Google Scholar 

  84. Cao J, Drews M, Lee HM et al (1998) The propeptide domain of membrane type 1 matrix metalloproteinase is required for binding of tissue inhibitor of metalloproteinases and for activation of pro-gelatinase a. J Biol Chem 273:34745-34752

    PubMed  CAS  Google Scholar 

  85. Cleutjens JP, Kandala JC, Guarda E et al (1995) Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27:1281-1292

    PubMed  CAS  Google Scholar 

  86. Spinale FG, Coker M, Bond BR, Zellner JL (2000) Myocardial matrix degradation and metalloproteinase activation in the failing heart: a potential therapeutic target. Cardiovasc Res 46:225-238

    PubMed  CAS  Google Scholar 

  87. Kim HE, Dalal SS, Young E et al (2000) Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest 106:857-866

    PubMed  CAS  Google Scholar 

  88. Foronjy RF, Sun J, Lemaitre V, D’Armiento JM (2008) Transgenic expression of matrix metalloproteinase-1 inhibits myocardial fibrosis and prevents the transition to heart failure in a pressure overload mouse model. Hypertens Res 31:725-735

    PubMed  CAS  Google Scholar 

  89. Creemers EE, Davis JN, Parkhurst AM et al (2003) Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 284:H364-371

    PubMed  CAS  Google Scholar 

  90. Cavusoglu E, Ruwende C, Chopra V et al (2006) Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an independent predictor of all-cause mortality, cardiac mortality, and myocardial infarction. Am Heart J 151:1101: e1101-1108

    Google Scholar 

  91. Ahmed SH, Clark LL, Pennington WR et al (2006) Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation 113:2089-2096

    PubMed  CAS  Google Scholar 

  92. Heymans S, Luttun A, Nuyens D et al (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135-1142

    PubMed  CAS  Google Scholar 

  93. Ducharme A, Frantz S, Aikawa M et al (2000) Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 106:55-62

    PubMed  CAS  Google Scholar 

  94. Romanic AM, Burns-Kurtis CL, Gout B et al (2001) Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit. Life sciences 68:799-814

    PubMed  CAS  Google Scholar 

  95. Hayashidani S, Tsutsui H, Ikeuchi M et al (2003) Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Physiol 285: H1229-H1235

    CAS  Google Scholar 

  96. Tao, ZY,Cavasin, MA, Yang F, Liu YH, Yang XP (2004) Temporal changes in matrix metalloproteinase expression and inflammatory response associated with cardiac rupture after myocardial infarction in mice. Life Sci 74:1561-1572

    PubMed  CAS  Google Scholar 

  97. Matsumura S, Iwanaga S, Moshizuki S et al (2005) Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J Clin Invest;115:599-609

    PubMed  CAS  Google Scholar 

  98. Kawakami R, Saito Y, Kishimoto I et al (2004) Overexpression of brain natriuretic peptide facilitates neutrophil infiltration and cardiac matrix metalloproteinase-9 expression after acute myocardial infarction. Circulation;110:3306-3312

    PubMed  CAS  Google Scholar 

  99. Lindsey M, Wedin K, Brown MD et al (2001) Matrix-dependent mechanism of neutrophil-mediated release and activation of matrix metalloproteinase 9 in myocardial ischemia/reperfusion. Circulation 103:2181-2187

    PubMed  CAS  Google Scholar 

  100. Itoh Y, Nagase H. (1995) Preferential inactivation of tissue inhibitor of metalloproteinases-1 that is bound to the precursor of matrix metalloproteinase 9 (progelatinase B) by human neutrophil elastase. J Biol Chem 270:16518-16521

    PubMed  CAS  Google Scholar 

  101. Bidouard JP, Duval N, Kapui Z et al (2003) SSR69071, an elastase inhibitor, reduces myocardial infarct size following ischemia-reperfusion injury. Eur J Pharmacol 461:49-52

    PubMed  CAS  Google Scholar 

  102. Takahashi S, Barry AC, Factor SM (1990) Collagen degradation in ischemic rat hearts. Biochem J 265:233-241

    PubMed  CAS  Google Scholar 

  103. Lerman RH, Apstein CS, Kagan HM et al (1983) Myocardial healing and repair after experimental infarction in the rabbit. Circ Res 53:378-388

    PubMed  CAS  Google Scholar 

  104. Jugdutt BI (1987) Left ventricular rupture threshold during the healing phase after myocardial infarction in the dog. Can J Physiol Pharmacol 65:307-316

    PubMed  CAS  Google Scholar 

  105. Jugdutt BI (1988) Effect of nitroglycerin and ibuprofen on left ventricular topography and rupture threshold during healing after myocardial infarction in the dog. Can J Physiol Pharmacol 66:385-395

    PubMed  CAS  Google Scholar 

  106. Jugdutt BI, Idikio H, Uwiera R (2007) Therapeutic drugs during healing after myocardial infarction modify infarct collagens and ventricular distensibility at elevated pressures. Mol Cell Biochem 304:79-91

    PubMed  CAS  Google Scholar 

  107. Koskivirta I, Kassiri Z, Rahkonen O (2010) Mice and tissue inhibitor of metalloproteinase 4 (TIMP4) deletions succumb to induced myocardial infarction but not to cardiac pressure overload. J Biol Chem 285:24487-24493

    PubMed  CAS  Google Scholar 

  108. Vanhoutte D, Schellings, Pinto Y, Heymans S (2006).Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: A temporal and spatial window. Cardiovasc Res 69:604-613

    Google Scholar 

  109. Jugdutt BI. Preventing adverse remodeling and rupture during healing after myocardial infarction in mice and humans. Circulation 122:103-105, 2010.

    PubMed  Google Scholar 

  110. Coker ML,Thomas CV, Clair MJ et al (1998) Myocardial matrix metalloproteinase activity and abundance with congestive heart failure. Am J Physiol Heart Circ Physiol 274:H1516-1523

    CAS  Google Scholar 

  111. Spinale FG, Mukherjee R, Zavadzkas JA et al (2010) Cardiac restricted overexpression of membrane type-1 matrix metalloproteinase causes adverse myocardial remodeling following myocardial infarction. J Biol Chem 285:30316-30327

    PubMed  CAS  Google Scholar 

  112. Vianello A, Caponi L, Franzoni F et al (2009) Role of matrix metalloproteinase and their tissue inhibitors as potential biomarkers of left ventricular remodeling in the athlete’s heart. Clin Sci (Lond) 117:157-164

    CAS  Google Scholar 

  113. Wagner RD, Delagardelle C, Ernens I et al (2006) Matrix metalloproteinase-9 is a marker of heart failure after myocardial infarction. J Card Fail 12:66-72

    PubMed  CAS  Google Scholar 

  114. Buralli S, Dini FL, Ballo P et al (2010) Circulating matrix metalloproteinase-3 and metalloproteinase-9 and tissue Doppler measures of diastolic dysfunction to risk stratify patients with systolic heart failure. Am J Cardiol 105:853-856

    PubMed  CAS  Google Scholar 

  115. Yang DC, Ma ST, Tan Y et al (2010) Imbalance of matrix metalloproteinases/tissue inhibitor of metalloproteinase-1 and loss of fibronectin expression in patients with congestive heart failure. Cardiology 116:133-141

    PubMed  CAS  Google Scholar 

  116. van den Borne SW, Cleutjens J, Hanemaaijer R et al (2008) Increased matrix metalloproteinase-8 and −9 activities in patients with infarct rupture after myocardial infarction. Cardiovasc Pathol 18:37-43

    PubMed  Google Scholar 

  117. Blankenberg S, Rupprecht HJ, Poirier O et al (2003) Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 107:1579-1585

    PubMed  CAS  Google Scholar 

  118. Kai H, Ikeda H, Yasukawa H et al (1998) Peripheral blood levels of matrix metalloproteinase-2 and −9 are elevated in patients with acute coronary syndromes. J Am Coll Cardiol 32:368-372

    PubMed  CAS  Google Scholar 

  119. Inokubo Y, Hanada H, Ishizaka H et al (2001) Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am Heart J 141:211-217

    PubMed  CAS  Google Scholar 

  120. Kaden JJ, Dempfle CE, Sueselbeck T et al (2003) Time-dependent changes in the plasma concentration of matrix metalloproteinase 9 after acute myocardial infarction. Cardiology 99:328-333

    Google Scholar 

  121. Squire IB, Evans J, Ng LL, Loftus IM, Thompson MM (2004) Plasma MMP-9 and MMP-2 following acute myocardial infarction in man: correlation with echocardiographic and neurohumoral parameters of left ventricular dysfunction. Journal of cardiac failure 10:328-333

    PubMed  CAS  Google Scholar 

  122. Renko J, Kalela A, Jaakkola O et al (2004) Serum matrix metalloproteinase-9 is elevated in men with a history of myocardial infarction. Scand J Clin Lab Invest 64:255-261

    PubMed  CAS  Google Scholar 

  123. Yan AT,Yan RT, Spinale FG et al (2006) Plasma matrix metalloproteinase-9 level is correlated with left ventricular volumes and ejection fraction in patients with heart failure. J Card Fail 12:514-519

    PubMed  CAS  Google Scholar 

  124. Sundstrom J, Evans JC, Benjamin EJ et al (2004) Relations of plasma matrix metalloproteinase-9 to clinical cardiovascular risk factors and echocardiographic left ventricular measures: the Framingham Heart Study. Circulation 109:2850-2856

    PubMed  Google Scholar 

  125. Hlatky MA, Ashley E, Quertermous T et al (2007) Matrix metalloproteinase circulating levels, genetic polymorphisms, and susceptibility to acute myocardial infarction among patients with coronary artery disease. Am Heart J 154:1043-1051

    PubMed  CAS  Google Scholar 

  126. Martos R, Baugh J, Ledwidge M et al (2007) Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation 115:888-895

    PubMed  Google Scholar 

  127. Wilson EM, Gunasinghe HR, Coker MT et al (2002) Plasma matrix metalloproteinase and inhibitor profiles in patients with heart failure. J Heart Fail 141:390-398

    Google Scholar 

  128. Altieri P, Brunelli C, Garibaldi S et al (2003) Metalloproteinases 2 and 9 are increased in plasma of patients with heart failure. Eur J Clin Invest 33:648-656

    PubMed  CAS  Google Scholar 

  129. Vasan, RS (2006) Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation 113:2335-2362

    PubMed  Google Scholar 

  130. Lindsey ML, Zamilpa R (2012) Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovasc Ther 30:31-41

    PubMed  CAS  Google Scholar 

  131. Chancey AL, Brower GL, Peterson JT, Janicki JS (2002) Effects of matrix metalloproteinase inhibition on ventricular remodeling due to volume overload. Circulation 105:1983-1988

    PubMed  CAS  Google Scholar 

  132. Spinale FG, Coker ML, Krombach SR et al (1999) Matrix metalloproteinase inhibition during the development of congestive heart failure : effects on left ventricular dimensions and function. Circ Res 85:364-376

    PubMed  CAS  Google Scholar 

  133. Rohde LE, Ducharme A, Arroyo LH et al (1999) Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 99:3063-3070

    PubMed  CAS  Google Scholar 

  134. Mukherjee R, Brinsa TA, Dowdy KB et al (2003) Myocardial infarct expansion and matrix metalloproteinase inhibition. Circulation 107:618-625

    PubMed  CAS  Google Scholar 

  135. Lindsey ML, Escobar GP, Dobrucki LW et al (2006) Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am J Physiol Heart Circ Physiol 290:H232-239

    PubMed  CAS  Google Scholar 

  136. Fedak PWM, Smookler DS, Kassiri Z et al (2004) TIMP-3 deficiency leads to dilated cardiomyopathy. Circulation. 110:2401-2409

    PubMed  CAS  Google Scholar 

  137. Fedak PW, Maravec CS, McCarthy PM et al (2006) Altered expression of disintegrin metalloproteinases and their inhibitor in human dilated cardiomyopathy. Circulation 113: 238-245

    PubMed  CAS  Google Scholar 

  138. Smookler DS, Mohammed FF, Kassiri Z et al (2006) Tissue inhibitor of metalloproteinase 3 regulates TNF-dependent systemic inflammation. J Immunol 176:721-725

    PubMed  CAS  Google Scholar 

  139. Jugdutt BI (2002) Monocytosis after acute myocardial infarction and left ventricular remodeling. J Am Coll Cardiol 39:247-250

    PubMed  Google Scholar 

  140. Sengelov H, Follin P, Kjeldsen L, Lollike K, Dahlgren C, Borregaard N (1995) Mobilization of granules and secretory vesicles during in vivo exudation of human neutrophils. J Immunol 154:4157-4165

    PubMed  CAS  Google Scholar 

  141. Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89:3503-3521

    PubMed  CAS  Google Scholar 

  142. Mollinedo F, Nakajima M, Llorens A et al (1997) Major co-localization of the extracellular-matrix degradative enzymes heparanase and gelatinase in tertiary granules of human neutrophils. Biochem J 327 :917-923

    PubMed  CAS  Google Scholar 

  143. Sahinarslan A, Kocaman SA, Bas D et al (2011) Plasma neutrophil gelatinase-associated lipocalin levels in acute myocardial infarction and stable coronary artery disease. Coron Artery Dis 22:333-338

    PubMed  Google Scholar 

  144. Yndestad A, Landro L, Ueland T et al (2009) Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur Heart J 30:1229-1236

    PubMed  CAS  Google Scholar 

  145. Palaniyappan A, Uwiera RER, Idikio H, Jugdutt BI (2009) Comparison of vasopeptidase inhibitor omapatrilat and angiotensin II type 1 receptor blocker candesartan on extracellular matrix, myeloperoxidase, cytokines and ventricular remodeling during healing after reperfused myocardial infarction. Mol Cell Biochem 321:9-22

    PubMed  CAS  Google Scholar 

  146. Askari AT, Brennan ML, Zhou X et al (2003) Myeloperoxidase and plasminogen activator inhibitor 1 play a central role in ventricular remodeling after myocardial infarction. J Exp Med 197:615-624

    PubMed  CAS  Google Scholar 

  147. Brennan ML, Penn MS, Van Lente F et al (2003) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 349:1595-1604

    PubMed  CAS  Google Scholar 

  148. Owen CA, Campbell EJ (1999) The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol 65:137-150

    PubMed  CAS  Google Scholar 

  149. Massberg S, Grahl L et al (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16:887-896

    PubMed  CAS  Google Scholar 

  150. Libby P, Lee RT (2000) Matrix matters. Circulation 102:1874-1876

    PubMed  CAS  Google Scholar 

  151. Pendergraft WF 3rd, Rudolph EH et al (2004) Proteinase 3 sidesteps caspases and cleaves p21(Waf1/Cip1/Sdi1) to induce endothelial cell apoptosis. Kidney Int 65:75-84

    PubMed  CAS  Google Scholar 

  152. Bank U, Kupper B, Reinhold D, Hoffmann T, Ansorge S (1999) Evidence for a crucial role of neutrophil-derived serine proteases in the inactivation of interleukin-6 at sites of inflammation. FEBS Lett 461:235-240

    PubMed  CAS  Google Scholar 

  153. Larosa CA, Rohrer MJ, Benoit SE et al (1994) Human neutrophil cathepsin G is a potent platelet activator. J Vasc Surg 19:306-318

    PubMed  CAS  Google Scholar 

  154. Reilly CF, Schechter NB, Travis J (1985) Inactivation of bradykinin and kallidin by cathepsin G and mast cell chymase. Biochem Biophys Res Commun 127:443-449

    PubMed  CAS  Google Scholar 

  155. Nahrendorf M, Swirski FK, Aikawa E et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037-3047

    PubMed  CAS  Google Scholar 

  156. Lambert JM, Lopez EF, Lindsey ML et al (2008) Macrophage roles following myocardial infarction. Int J Cardiol 130:147-158

    PubMed  Google Scholar 

  157. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958-969

    PubMed  CAS  Google Scholar 

  158. Troidl C, Mollmann H, Nef H et al (2009) Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J Cell Mol Med 13:3485-3496

    PubMed  CAS  Google Scholar 

  159. dos Santos L, Santos AA, Goncalves GA, Krieger JE, Tucci PJ (2010) Bone marrow cell therapy prevents infarct expansion and improves border zone remodeling after coronary occlusion in rats. Int J Cardiol 145:34-39

    PubMed  Google Scholar 

  160. Hu Y,Zhang H, Lu Y et al (2011) Class A scavenger receptor attenuates myocardial infarction-induced cardiomyocyte necrosis through suppressing M1 macrophage subset polarization. Basic Res Cardiol 106:1311-1328

    PubMed  CAS  Google Scholar 

  161. Leuschner F, Rauch PJ, Ueno T et al (2012) Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 209:123-137

    PubMed  CAS  Google Scholar 

  162. Yang Z, Zingarelli B, Szabo C et al (2000) Crucial role of endogenous interleukin-10 production in myocardial ischemia/reperfusion injury. Circulation 101:1019-1026

    PubMed  CAS  Google Scholar 

  163. Timmers L,Sluijter JP, van Keulen JK et al (2008) Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res 102:257-264

    PubMed  CAS  Google Scholar 

  164. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23-35

    PubMed  CAS  Google Scholar 

  165. Martinez FO, Helming L, Gordon S et al (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451-483

    PubMed  CAS  Google Scholar 

  166. Song E, Ouyang N, Hörbelt M, Antus B, Wang M, Exton MS (2000) Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol 204:19-28

    PubMed  CAS  Google Scholar 

  167. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593-604

    PubMed  CAS  Google Scholar 

  168. Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65:40-51

    PubMed  CAS  Google Scholar 

  169. Hudson MP, Armstrong PW, Ruzyllo W et al (2006) Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. J Am Coll Cardiol. 48:15-20

    PubMed  CAS  Google Scholar 

  170. Patterson C, Portbury A, Schisler JC, Willis MS (2011) Tear me down: Role of calpain in the development of cardiac ventricular hypertrophy. Circ Res 109:453-462

    PubMed  CAS  Google Scholar 

  171. Sandman S, Yu M, Unger T (2001) Transcriptional and translational regulation of calpain in the rat after myocardial infarction – effects of AT(1) and AT(2) receptor antagonists and ACE inhibitor. Br J Pharmacol 132:767-777

    Google Scholar 

  172. Mani SK, Balasubramanian S, Zavadzkas JA et al (2009) Calpain inhibition preserves myocardial structure and function following myocardial infarction. Am J Physiol Heart Circ Physiol 297:H1744-H1751

    PubMed  CAS  Google Scholar 

  173. Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A (1990) Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 265:22348-22357

    PubMed  CAS  Google Scholar 

  174. Urata H, Healy B, Stewart RW, Bumpus FM, Husain A (1990) Angiotensin II-forming pathways in normal and failing human hearts. Circ Res 66:883-890

    PubMed  CAS  Google Scholar 

  175. Jorde UP, Ennezat PV, Lisker J et al (2000) Maximally recommended doses of angiotensin-converting enzyme (ACE) inhibitors do not completely prevent ACE-mediated formation of angiotensin II in chronic heart failure. Circulation 101:844-846

    PubMed  CAS  Google Scholar 

  176. Hara M, Ono K, Hwang MW et al (2002) Evidence for a role of mast cells in the evolution to congestive heart failure. J Exp Med 195:375-381

    PubMed  CAS  Google Scholar 

  177. Matsumoto T, Wada A, Tsutamoto T et al (2003) Chymase inhibition prevents cardiac fibrosis and improves diastolic dysfunction in the progression of heart failure. Circulation 107:2555-2558

    PubMed  Google Scholar 

  178. Jin D, Takai S, Sakaguchi M et al (2004) An antiarrhythmic effect of a chymase inhibitor after myocardial infarction. J Pharmacol Exp Ther 309:490-497

    PubMed  CAS  Google Scholar 

  179. Matsumoto C, Hayashi T, Kitada K et al (2009) Chymase plays an important role in left ventricular remodeling influenced by intermittent hypoxia in mice. Hypertension 54:164-171

    PubMed  CAS  Google Scholar 

  180. Oyamada S, Bianchi C, Takai s, Chu LM, Selke FW (2011) Chymase inhibition reduces infarction and matrix metalloproteinase-9 activation and attenuates inflammation and fibrosis after acute myocardial ischemia/reperfusion. J Pharmacol Exp Ther 339:143-151

    Google Scholar 

  181. Wei CC, Hase N, Inoue Y et al (2010) Mast cell chymase limits the cardiac efficacy of Ang I-converting enzyme inhibitor therapy in rodents. J Clin Invest 120:1229-1239

    PubMed  CAS  Google Scholar 

  182. Pat B, Chen Y, Killingsworth C, Gladden JD et al (2011) Chymase inhibition prevents fibronectin and myofibrillar loss and improves cardiomyocyte function and LV torsion angle in dogs with isolated mitral regurgitation. Circulation 122:1488-1495

    Google Scholar 

  183. Okumura K, Takai S, Muramatsu M et al (2004) Human chymase degrades human fibronectin. Clin Chim Acta 347:223-225

    PubMed  CAS  Google Scholar 

  184. Ihara M, Urata H, Shirai K et al (2000) High cardiac angiotensin-II-forming activity in infarcted and non-infarcted human myocardium. Cardiology 94:247-253

    PubMed  CAS  Google Scholar 

  185. Jahanyar J, Youker KA, Loebe M et al (2007) Mast cell-derived cathepsin g: a possible role in adverse remodeling of the failing human heart. J Surg Res 140:199-203

    PubMed  CAS  Google Scholar 

  186. Ng LL, Khan SQ, Narayan H et al (2011) Proteinase-3 and prognosis of patients with acute myocardial infarction. Clin Sci (Lond) 120:231-238

    CAS  Google Scholar 

  187. Zidar N, Jera J, Maja J, Dusan S (2007) Caspases in myocardial infarction. Adv Clin Chem 44:1-33

    PubMed  CAS  Google Scholar 

  188. Choudhury S, Bae S, Kumar SR et al (2010) Role of AIF in cardiac apoptosis in hypertrophic cardiomyocytes from Dahl salt-sensitive rats. Cardiovasc Res 85:28-37

    PubMed  CAS  Google Scholar 

  189. Laugwitz KL, Moretti A, Weig HJ et al (2001) Blocking caspase-activated apoptosis improves contractility in failing myocardium. Hum Gene Ther 12:2051-2063

    PubMed  CAS  Google Scholar 

  190. Yarbrough WM, Mukherjee R, Stroud RE et al (2010) Caspase inhibition modulates left ventricular remodeling following myocardial infarction through cellular and extracellular mechanisms. J Cardiovasc Pharmacol 55:408-416

    PubMed  CAS  Google Scholar 

  191. Willis MS, Patterson C (2006) Into the heart: the emerging role of the ubiquitin-proteasome system, J Mol Cell cardiol 41:567-579

    PubMed  CAS  Google Scholar 

  192. Sakata Y, Yamamoto K, Mano T et al ( 2004) Activation of matrix metalloproteinases precedes left ventricular remodeling in hypertensive heart failure rats. Its inhibition as a primary effect of angiotensin-converting enzyme inhibitor. Circulation 109:2143-2149

    PubMed  CAS  Google Scholar 

  193. Laviades C, Varo N, Fernandez J et al (1998) Abnormalities of the extracellular degradation of collagen type I in essential hypertension. Circulation 98:535-540

    PubMed  CAS  Google Scholar 

  194. Li-Saw-Hee-FL, Edmunds E, Blann AD, Beevers LD, Lip GY (2000) Matrix-matalloproteinase-9 and tissue inhibitor metalloproteinase-1 levels in essential hypertension. Relationship to left ventricular mass and antihypertensive therapy. Int J Cardiol 75:43-47

    Google Scholar 

  195. Lindsay MM, Maxwell P, Dunn FG (2002) TIMP-1: a marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension 40:136-141

    PubMed  CAS  Google Scholar 

  196. Timms PM, Wright A, Maxwell P et al (2002) Plasma tissue inhibitor of metalloproteinase-1 levels are elevated in essential hypertension and related to left ventricular hypertrophy. Am J Hypertens 15:269-272

    PubMed  CAS  Google Scholar 

  197. Roldan V, Marin F, Shiraishi H et al (2008) Matrix metalloproteinases and tissue remodeling in hypertrophic cardiomyopathy. Am Heart J 156:85-91

    PubMed  CAS  Google Scholar 

  198. Zile MR, DeSantis S, Catalin F et al (2011) Plasma biomarkers that reflect determinants of matrix composition identify the presence of left ventricular hypertrophy and diastolic heart failure. Circ Heart Fail 4:246-256

    PubMed  CAS  Google Scholar 

  199. Cicilini MA, Resende MM, Bissoli NS, Vasquez EC, Cabral AM (1995) Calpain activity of hypertrophic hearts from hypertensive rats. Braz J Med Biol Res 28:621-625

    PubMed  CAS  Google Scholar 

  200. Diez J (2010) Altered degradation of extracellular matrix in myocardial remodeling: the growing role of cathepsins and cystatins. Cardiovasc Res 87:591-592

    PubMed  CAS  Google Scholar 

  201. Cheng XW, Obata K, Kuzuya M et al (2006) Elastolytic cathepsin induction/activation system exists in myocardium and is upregulated in hypertensive heart failure. Hypertension 48:979-987

    PubMed  CAS  Google Scholar 

  202. Charlemagne D, Orlowski J, Oliviero P et al (1994) Alteration of Na, K-ATPase subunit mRNA and protein levels in hypertrophied rat heart. J Biol Chem 269:1541-1547

    PubMed  CAS  Google Scholar 

  203. Adams JW, Sakata Y, Davis MG et al (1998) Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Nat Acad Sci USA 95:10140-10145

    PubMed  CAS  Google Scholar 

  204. Mani SK, Shiraishi H, Balasubramanian S et al (2008) In vivo administration of calpeptin attenuates calpain activation and cardiomyocyte loss in pressure-overloaded feline myocardium. Am J Physiol Heart Circ Physiol 295:H314-H326

    Google Scholar 

  205. Franz M, Berndt A, Altendorf-Hofman A (2009) Serum levels of large tenascin-C variants, matrix metalloproteinase-9, and tissue inhibitors of matrix metalloproteinases in concentric versus eccentric left ventricular hypertrophy. Eur J Heart Fail 11:1057-1062

    PubMed  CAS  Google Scholar 

  206. Diez J (2007) Mechanisms of cardiac fibrosis in hypertension. J Clin Hypertens (Greenwich) 9:546-550

    CAS  Google Scholar 

  207. van den Borne SW, Diez J, Blankesteijn WM et al (2010) Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7:30-37

    PubMed  Google Scholar 

  208. Sugihara N, Genda A, Shimizu M et al (1988) Diastolic dysfunction and its relation to myocardial fibrosis in essential hypertension. J Cardiol 18:353-361

    PubMed  CAS  Google Scholar 

  209. Mclenachan JM, Dargie HJ (1990) Ventricular arrhythmias in hypertensive left ventricular hypertrophy. Relationship to coronary artery disease, left ventricular dysfunction, and myocardial fibrosis. Am J Hypertens 3:735-740

    PubMed  CAS  Google Scholar 

  210. Janicki JS, Brower GL (2002) The role of myocardial fibrillar collagen in ventricular remodeling and function. J Card Fail 8:S319-325

    PubMed  CAS  Google Scholar 

  211. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199-221

    PubMed  CAS  Google Scholar 

  212. Lopez B, Gonzalez A, Varo N et al (2001) Biochemical assessment of myocardial fibrosis in hypertensive heart disease. Hypertension 38:1222-1226

    PubMed  CAS  Google Scholar 

  213. Bradshaw AD (2009) The role of SPARC in extracellular matrix assembly. J Cell Commun Signal 3:239-246

    PubMed  Google Scholar 

  214. Takino T, Nakamura M, Hiramori K et al (1999) Circulating levels of carboxyterminal propeptide of type I procollagen and left ventricular remodeling after myocardial infarction. Cardiology 91:81-86

    PubMed  CAS  Google Scholar 

  215. Diez J, Panizo A, Gil MJ et al (1996) Serum Markers of Collagen Type I Metabolism in Spontaneously Hypertensive Rats. Circulation 93:1026-1032

    PubMed  CAS  Google Scholar 

  216. Radovan J, Vaclav P, Petr W et al (2006) Changes of collagen metabolism predict the left ventricular remodeling after myocardial infarction. Mol Cell Biochem 293:71-78

    PubMed  CAS  Google Scholar 

  217. Risteli J, Risteli L (1995) Analysing connective tissue metabolites in human serum. Biochemical, physiological and methodological aspects. J Hepatol 22:77-81

    PubMed  CAS  Google Scholar 

  218. Barthelemy O, Beygui F, Vicaut E et al (2009) Relation of high concentrations of plasma carboxy-terminal telopeptide of collagen type I with outcome in acute myocardial infarction. Am J Cardiol 104:904-909

    PubMed  CAS  Google Scholar 

  219. Sharma UC, Pokharel S, van Brakel JJ et al (2004) Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110:3121-3128

    PubMed  CAS  Google Scholar 

  220. Li X, Mikhalkova D, Gao E et al (2011) Myocardial injury after ischemia-reperfusion in mice deficient in Akt2 is associated with increased cardiac macrophage density. Am J Physiol Heart Circ Physiol 301:H1932-1940

    PubMed  CAS  Google Scholar 

  221. Liu YH, D’ambrosio M, Liao TD et al (2009) N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol 296:H404-H412

    PubMed  CAS  Google Scholar 

  222. Psarras S, Mavroidis M, Sanoudou D et al (2011) Regulation of adverse remodelling by osteopontin in a genetic heart failure model. Eur Heart J 33:1954-1963

    PubMed  Google Scholar 

  223. Lin YH, Lin LY, Wu YW et al (2009) The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients. Clin Chim Acta 409:96-99

    PubMed  CAS  Google Scholar 

  224. Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Part I. Aging arteries: a “set up” for vascular disease. Circulation 107:139-146

    PubMed  Google Scholar 

  225. Bradshaw AD, Baicu CF, Rentz TJ et al (2010) Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing. Am J Physiol Heart Circ Physiol 298:H614-H622

    PubMed  CAS  Google Scholar 

  226. Bujak M, Kweon HJ, Chatila K et al (2008) Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol 51:1384-1392

    PubMed  Google Scholar 

  227. Mocatta TJ, Pilbrow AP, Cameron VA et al (2007) Plasma concentrations of myeloperoxidase predict mortality after myocardial infarction. J Am Coll Cardil 49:1993-2000

    CAS  Google Scholar 

  228. Palaniyappan A, Idikio H, Jugdutt BI (2009) Secretory leucocyte protease inhibitor and matricellular protein modulation of post reperfused myocardial infarction healing, fibrosis and remodeling in rat model. Effect of candesartan and omapatrilat. (Abstract) Circulation 120(Suppl 2):S837

    Google Scholar 

  229. Van Kimmenade RR, Januzzi Jr JL (2012) Emerging biomarkers in heart failure. Clin Chem;58:127-138

    PubMed  Google Scholar 

  230. Januzzi Jr JL, Rehman S, Mohammed AA et al (2011) Use of amino-terminal pro-B natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol 58:1881-1889

    PubMed  CAS  Google Scholar 

  231. Iraqi W, Rossignol P, Angioi M et al (2009) Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) study. Circulation 119:2471-2479

    PubMed  CAS  Google Scholar 

  232. Manhenke C, Orn S, von Haehling S et al. (2011) Clustering of 37 circulating biomarkers by exploratory factor analysis in patients following complicated acute myocardial infarction. Int J Cardiol. doi:10.1016/j.ijc.2011.11.089

    Google Scholar 

  233. Manhenke C, Orn S, Squire I et al (2011) The prognostic value of circulating markers of collagen turnover after acute myocardial infarction. Int J Cardiol 150:277-282

    PubMed  Google Scholar 

  234. Rajpoot K, Grau V, Noble JA, Becher H, Szmigielski C (2011) The evaluation of single-view and multi-view fusion 3D echocardiography using image-driven segmentation and tracking. Med Image Anal. 15:514-528

    PubMed  Google Scholar 

  235. Flett AS, Hayward MP, Ashworth MT et al (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122:138-144

    PubMed  Google Scholar 

  236. Verhaert D, Thavendiranathan P, Giri S et al (2011) Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging 4:269-278

    PubMed  Google Scholar 

  237. Crean A, Khan SN, Davies LC, Coulden R, Dutka DP (2009) Assessment of Myocardial Scar; Comparison between F-FDG PET, CMR and Tc-Sestamibi. Clin Med Cardiol;3:69-76

    PubMed  CAS  Google Scholar 

  238. Coulden R, Chung P, Sonnex E et al (2012) Suppression of myocardial (18)F-FDG uptake with a preparatory “Atkins-style” low-carbohydrate diet. Eur Radiol DOI 10.1007/s00330-012-2478-2

    Google Scholar 

  239. Divakaran V, Mann DL (2008) The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res 103:1072-1083

    PubMed  CAS  Google Scholar 

  240. Engelhardt S (2012) Small RNA biomarkers come of age. J Am Coll Cardiol 60:300-303

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grant # IAP99003 from the Canadian Institutes of Health Research, Ottawa, Ontario. I thank Catherine Jugdutt for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodh I. Jugdutt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jugdutt, B.I. (2014). Proteases as Clinical Markers of Adverse Remodeling for Heart Failure in the Aging Population. In: Dhalla, N., Chakraborti, S. (eds) Role of Proteases in Cellular Dysfunction. Advances in Biochemistry in Health and Disease, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9099-9_23

Download citation

Publish with us

Policies and ethics