Skip to main content

The DNA Damage Response Mediates Apoptosis and Tumor Suppression

  • Chapter
  • First Online:
Cell Death

Abstract

Cells encounter stress on a daily basis that can damage their DNA and promote malignant transformation, yet the latter rarely occurs. The DNA damage response (DDR) is a highly coordinated signaling pathway that functions to detect and repair DNA damage in cells, inhibiting transformation. However, when DNA damage is so severe that it cannot be repaired, the DDR promotes apoptosis, thus preventing the propagation of abnormal cells. The tumor suppressor protein, p53, is one of the most essential molecules keeping DNA damage in check. Here, we discuss the signaling cascades that activate p53 upon DNA damage and the molecular mechanisms that mediate p53-dependent and -independent apoptosis. Moreover, we discuss the signals that trigger the DDR during malignant propagation and the importance of DNA damage-mediated apoptosis in preventing tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28:739–45. doi:S1097-2765(07)00783-6 [pii]10.1016/j.molcel.2007.11.015.

    PubMed  CAS  Google Scholar 

  2. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;432:316–23. doi:nature03097 [pii]10.1038/nature03097.

    PubMed  CAS  Google Scholar 

  3. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8. doi:nature08467 [pii]10.1038/nature08467.

    PubMed  CAS  Google Scholar 

  4. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40:179–204. doi:S1097-2765(10)00747-1 [pii]10.1016/j.molcel.2010.09.019.

    PubMed  CAS  Google Scholar 

  5. Lindahl T, Barnes DE. Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol. 2000;65:127–33.

    PubMed  CAS  Google Scholar 

  6. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. ATM activation by oxidative stress. Science. 2010;330:517–21. doi:330/6003/517 [pii]10.1126/science.1192912.

    PubMed  CAS  Google Scholar 

  7. Doll R, Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981;66:1191–308.

    PubMed  CAS  Google Scholar 

  8. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74. doi:10.1038/3507723235077232 [pii].

    PubMed  CAS  Google Scholar 

  9. Smith J, Tho LM, Xu N, Gillespie DA. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res. 2010;108:73–112. doi:B978-0-12-380888-2.00003-0 [pii]10.1016/B978-0-12-380888-2.00003-0.

    PubMed  CAS  Google Scholar 

  10. Lavin MF, Kozlov S. ATM activation and DNA damage response. Cell Cycle. 2007;6:931–42. doi:4180 [pii].

    PubMed  CAS  Google Scholar 

  11. Cimprich KA, Cortez D. ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol. 2008;9:616–27. doi:nrm2450 [pii]10.1038/nrm2450.

    PubMed  CAS  Google Scholar 

  12. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421:499–506. doi:10.1038/nature01368[pii].

    PubMed  CAS  Google Scholar 

  13. Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science. 2005;308:551–4. doi:1108297 [pii]10.1126/science.1108297.

    PubMed  CAS  Google Scholar 

  14. Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300:1542–8. doi:10.1126/science.1083430300/5625/1542 [pii].

    PubMed  CAS  Google Scholar 

  15. Cortez D, Guntuku S, Qin J, Elledge SJ. ATR and ATRIP: partners in checkpoint signaling. Science. 2001;294:1713–6. doi:10.1126/science.1065521294/5547/1713 [pii].

    PubMed  CAS  Google Scholar 

  16. Matsuoka S, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–6. doi:316/5828/1160 [pii]10.1126/science.1140321.

    PubMed  CAS  Google Scholar 

  17. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.

    PubMed  CAS  Google Scholar 

  18. Paull TT, et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol. 2000;10:886–95. doi:S0960-9822(00)00610-2 [pii].

    PubMed  CAS  Google Scholar 

  19. Lukas C, Falck J, Bartkova J, Bartek J, Lukas J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol. 2003;5:255–60. doi:10.1038/ncb945 [pii].

    PubMed  CAS  Google Scholar 

  20. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature. 2003;421:961–6. doi:10.1038/nature01446 [pii].

    PubMed  CAS  Google Scholar 

  21. Wang B, Matsuoka S, Carpenter PB, Elledge SJ. 53BP1, a mediator of the DNA damage checkpoint. Science. 2002;298:1435–8. doi:10.1126/science.1076182 [pii].

    PubMed  CAS  Google Scholar 

  22. Lou Z, et al. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell. 2006;21:187–200. doi:S1097-2765(05)01813-7 [pii]10.1016/j.molcel.2005.11.025.

    PubMed  CAS  Google Scholar 

  23. Mochan TA, Venere M, DiTullio Jr RA, Halazonetis TD. 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res. 2003;63:8586–91.

    PubMed  CAS  Google Scholar 

  24. Huyen Y, et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature. 2004;432:406–11. doi:nature03114 [pii]10.1038/nature03114.

    PubMed  CAS  Google Scholar 

  25. Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science. 1999;286:1162–6. doi:7959 [pii].

    PubMed  CAS  Google Scholar 

  26. Zou L, Cortez D, Elledge SJ. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev. 2002;16:198–208. doi:10.1101/gad.950302.

    PubMed  CAS  Google Scholar 

  27. Wang X, et al. Rad17 phosphorylation is required for claspin recruitment and Chk1 activation in response to replication stress. Mol Cell. 2006;23:331–41. doi:S1097-2765(06)00449-7 [pii]10.1016/j.molcel.2006.06.022.

    PubMed  Google Scholar 

  28. Bao S, et al. ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature. 2001;411:969–74. doi:10.1038/35082110 [pii].

    PubMed  CAS  Google Scholar 

  29. Lee J, Kumagai A, Dunphy WG. Claspin, a Chk1-regulatory protein, monitors DNA replication on chromatin independently of RPA, ATR, and Rad17. Mol Cell. 2003;11:329–40. doi:S1097276503000455 [pii].

    PubMed  CAS  Google Scholar 

  30. Liu Q, et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 2000;14:1448–59.

    PubMed  CAS  Google Scholar 

  31. Sanchez Y, et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science. 1997;277:1497–501.

    PubMed  CAS  Google Scholar 

  32. Kruse JP, Gu W. Modes of p53 regulation. Cell. 2009;137:609–22. doi:S0092-8674(09)00511-X [pii]10.1016/j.cell.2009.04.050.

    PubMed  CAS  Google Scholar 

  33. Hirao A, et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science. 2000;287:1824–7. doi:8333 [pii].

    PubMed  CAS  Google Scholar 

  34. Chipuk JE, Green DR. Dissecting p53-dependent apoptosis. Cell Death Differ. 2006;13:994–1002. doi:4401908 [pii]10.1038/sj.cdd.4401908.

    PubMed  CAS  Google Scholar 

  35. Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008;9:402–12. doi:nrm2395 [pii]10.1038/nrm2395.

    PubMed  CAS  Google Scholar 

  36. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9:400–14. doi:nrc2657 [pii]10.1038/nrc2657.

    PubMed  CAS  Google Scholar 

  37. Mandic A, Hansson J, Linder S, Shoshan MC. Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem. 2003;278:9100–6. doi:10.1074/jbc.M210284200 [pii].

    PubMed  CAS  Google Scholar 

  38. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13:184–90. doi:ncb0311-184 [pii]10.1038/ncb0311-184.

    PubMed  CAS  Google Scholar 

  39. Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol. 2012;13:411–24. doi:nrm3376 [pii]10.1038/nrm3376.

    PubMed  CAS  Google Scholar 

  40. Jwa M, Chang P. PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1alpha-mediated unfolded protein response. Nat Cell Biol. 2012;14:1223–30. doi:ncb2593 [pii]10.1038/ncb2593.

    PubMed  CAS  Google Scholar 

  41. Gorman AM, Healy SJ, Jager R, Samali A. Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther. 2012;134:306–16. doi:S0163-7258(12)00043-5 [pii]10.1016/j.pharmthera.2012.02.003.

    PubMed  CAS  Google Scholar 

  42. Green DR. Means to an end: apoptosis and other cell death mechanisms. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2011.

    Google Scholar 

  43. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.

    PubMed  CAS  Google Scholar 

  44. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9:231–41. doi:nrm2312 [pii]10.1038/nrm2312.

    PubMed  CAS  Google Scholar 

  45. Dickens LS, Powley IR, Hughes MA, MacFarlane M. The ‘complexities’ of life and death: death receptor signalling platforms. Exp Cell Res. 2012;318:1269–77. doi:S0014-4827(12)00188-7 [pii]10.1016/j.yexcr.2012.04.005.

    PubMed  CAS  Google Scholar 

  46. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104:487–501. doi:S0092-8674(01)00237-9 [pii].

    PubMed  CAS  Google Scholar 

  47. Scott FL, et al. The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature. 2009;457:1019–22. doi:nature07606 [pii]10.1038/nature07606.

    PubMed  CAS  Google Scholar 

  48. Kischkel FC, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 1995;14:5579–88.

    PubMed  CAS  Google Scholar 

  49. Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 2003;10:26–35. doi:10.1038/sj.cdd.4401186 [pii].

    PubMed  CAS  Google Scholar 

  50. Oberst A, et al. Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J Biol Chem. 2010;285:16632–42. doi:M109.095083 [pii]10.1074/jbc.M109.095083.

    PubMed  CAS  Google Scholar 

  51. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol. 2000;2:156–62. doi:10.1038/35004029.

    PubMed  CAS  Google Scholar 

  52. Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11:621–32. doi:nrm2952 [pii]10.1038/nrm2952.

    PubMed  CAS  Google Scholar 

  53. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997;90:405–13. doi:S0092-8674(00)80501-2 [pii].

    PubMed  CAS  Google Scholar 

  54. Zou H, Li Y, Liu X, Wang X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem. 1999;274:11549–56.

    PubMed  CAS  Google Scholar 

  55. Schafer ZT, Kornbluth S. The apoptosome: physiological, developmental, and pathological modes of regulation. Dev Cell. 2006;10:549–61. doi:S1534-5807(06)00169-9 [pii]10.1016/j.devcel.2006.04.008.

    PubMed  CAS  Google Scholar 

  56. Riedl SJ, Salvesen GS. The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol. 2007;8:405–13. doi:nrm2153 [pii]10.1038/nrm2153.

    PubMed  CAS  Google Scholar 

  57. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell. 2010;37:299–310. doi:S1097-2765(10)00079-1 [pii]10.1016/j.molcel.2010.01.025.

    PubMed  CAS  Google Scholar 

  58. Llambi F, et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell. 2011;44:517–31. doi:S1097-2765(11)00760-X [pii]10.1016/j.molcel.2011.10.001.

    PubMed  CAS  Google Scholar 

  59. Cheng EH, et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell. 2001;8:705–11. doi:S1097-2765(01)00320-3 [pii].

    PubMed  CAS  Google Scholar 

  60. Wei MC, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292:727–30. doi:10.1126/science.1059108292/5517/727 [pii].

    PubMed  CAS  Google Scholar 

  61. Willis SN, et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science. 2007;315:856–9. doi:315/5813/856 [pii]10.1126/science.1133289.

    PubMed  CAS  Google Scholar 

  62. Wei MC, et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 2000;14:2060–71.

    PubMed  CAS  Google Scholar 

  63. Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol. 2000;20:929–35.

    PubMed  CAS  Google Scholar 

  64. Kuwana T, et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell. 2005;17:525–35. doi:S1097276505010774 [pii]10.1016/j.molcel.2005.02.003.

    PubMed  CAS  Google Scholar 

  65. Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358:15–6. doi:10.1038/358015a0.

    PubMed  CAS  Google Scholar 

  66. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–31. doi:S0092-8674(00)81871-1 [pii].

    PubMed  CAS  Google Scholar 

  67. Donehower LA, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356:215–21. doi:10.1038/356215a0.

    PubMed  CAS  Google Scholar 

  68. Lang GA, et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell. 2004;119:861–72. doi:S0092867404010487 [pii]10.1016/j.cell.2004.11.006.

    PubMed  CAS  Google Scholar 

  69. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature. 1997;387:299–303. doi:10.1038/387299a0.

    PubMed  CAS  Google Scholar 

  70. Linares LK, Hengstermann A, Ciechanover A, Muller S, Scheffner M. HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci U S A. 2003;100:12009–14. doi:10.1073/pnas.2030930100 [pii].

    PubMed  CAS  Google Scholar 

  71. Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992;69:1237–45. doi:0092-8674(92)90644-R [pii].

    PubMed  CAS  Google Scholar 

  72. Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 1993;7:1126–32.

    PubMed  CAS  Google Scholar 

  73. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137:413–31. doi:S0092-8674(09)00459-0 [pii]10.1016/j.cell.2009.04.037.

    PubMed  CAS  Google Scholar 

  74. Haupt Y, Rowan S, Shaulian E, Vousden KH, Oren M. Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev. 1995;9:2170–83.

    PubMed  CAS  Google Scholar 

  75. Speidel D. Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell Biol. 2010;20:14–24. doi:S0962-8924(09)00240-2 [pii]10.1016/j.tcb.2009.10.002.

    PubMed  CAS  Google Scholar 

  76. Chipuk JE, Maurer U, Green DR, Schuler M. Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell. 2003;4:371–81. doi:S1535610803002721 [pii].

    PubMed  CAS  Google Scholar 

  77. Chipuk JE, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–4. doi:10.1126/science.1092734303/5660/1010 [pii].

    PubMed  CAS  Google Scholar 

  78. Pietsch EC, et al. The tetramerization domain of p53 is required for efficient BAK oligomerization. Cancer Biol Ther. 2007;6:1576–83. doi:4719 [pii].

    PubMed  CAS  Google Scholar 

  79. Leu JI, Dumont P, Hafey M, Murphy ME, George DL. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol. 2004;6:443–50. doi:10.1038/ncb1123 [pii].

    PubMed  CAS  Google Scholar 

  80. Petros AM, Gunasekera A, Xu N, Olejniczak ET, Fesik SW. Defining the p53 DNA-binding domain/Bcl-x(L)-binding interface using NMR. FEBS Lett. 2004;559:171–4. doi:10.1016/S0014-5793(04)00059-6S0014579304000596 [pii].

    PubMed  CAS  Google Scholar 

  81. Mihara M, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11:577–90. doi:S1097276503000509 [pii].

    PubMed  CAS  Google Scholar 

  82. Schuler M, Green DR. Transcription, apoptosis and p53: catch-22. Trends Genet. 2005;21:182–7. doi:S0168-9525(05)00015-6 [pii]10.1016/j.tig.2005.01.001.

    PubMed  CAS  Google Scholar 

  83. Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science. 2005;309:1732–5. doi:309/5741/1732 [pii]10.1126/science.1114297.

    PubMed  CAS  Google Scholar 

  84. Joerger AC, Fersht AR. Structural biology of the tumor suppressor p53. Annu Rev Biochem. 2008;77:557–82. doi:10.1146/annurev.biochem.77.060806.091238.

    PubMed  CAS  Google Scholar 

  85. Scolnick DM, et al. CREB-binding protein and p300/CBP-associated factor are transcriptional coactivators of the p53 tumor suppressor protein. Cancer Res. 1997;57:3693–6.

    PubMed  CAS  Google Scholar 

  86. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9. doi:10.1038/387296a0.

    PubMed  CAS  Google Scholar 

  87. Walker KK, Levine AJ. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci U S A. 1996;93:15335–40.

    PubMed  CAS  Google Scholar 

  88. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994;265:346–55.

    PubMed  CAS  Google Scholar 

  89. Wang Y, et al. p53 domains: identification and characterization of two autonomous DNA-binding regions. Genes Dev. 1993;7:2575–86.

    PubMed  CAS  Google Scholar 

  90. Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595–606. doi:S0092-8674(00)80521-8 [pii].

    PubMed  CAS  Google Scholar 

  91. Siliciano JD, et al. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 1997;11:3471–81.

    PubMed  CAS  Google Scholar 

  92. Shieh SY, Taya Y, Prives C. DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J. 1999;18:1815–23. doi:10.1093/emboj/18.7.1815.

    PubMed  CAS  Google Scholar 

  93. Ashcroft M, Kubbutat MH, Vousden KH. Regulation of p53 function and stability by phosphorylation. Mol Cell Biol. 1999;19:1751–8.

    PubMed  CAS  Google Scholar 

  94. Tibbetts RS, et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 1999;13:152–7.

    PubMed  CAS  Google Scholar 

  95. Unger T, et al. Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J. 1999;18:1805–14. doi:10.1093/emboj/18.7.1805.

    PubMed  CAS  Google Scholar 

  96. Wu Z, et al. Mutation of mouse p53 Ser23 and the response to DNA damage. Mol Cell Biol. 2002;22:2441–9.

    PubMed  CAS  Google Scholar 

  97. Sluss HK, Armata H, Gallant J, Jones SN. Phosphorylation of serine 18 regulates distinct p53 functions in mice. Mol Cell Biol. 2004;24:976–84.

    PubMed  CAS  Google Scholar 

  98. Chao C, Herr D, Chun J, Xu Y. Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression. EMBO J. 2006;25:2615–22. doi:7601167 [pii]10.1038/sj.emboj.7601167.

    PubMed  CAS  Google Scholar 

  99. Maya R, et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 2001;15:1067–77. doi:10.1101/gad.886901.

    PubMed  CAS  Google Scholar 

  100. Gannon HS, Woda BA, Jones SN. ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice. Cancer Cell. 2012;21:668–79. doi:S1535-6108(12)00163-8 [pii]10.1016/j.ccr.2012.04.011.

    PubMed  CAS  Google Scholar 

  101. Carter S, Bischof O, Dejean A, Vousden KH. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol. 2007;9:428–35. doi:ncb1562 [pii]10.1038/ncb1562.

    PubMed  CAS  Google Scholar 

  102. Cheng Q, Chen L, Li Z, Lane WS, Chen J. ATM activates p53 by regulating MDM2 oligomerization and E3 processivity. EMBO J. 2009;28:3857–67. doi:emboj2009294 [pii]10.1038/emboj.2009.294.

    PubMed  CAS  Google Scholar 

  103. Gajjar M, et al. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell. 2012;21:25–35. doi:S1535-6108(11)00439-9 [pii]10.1016/j.ccr.2011.11.016.

    PubMed  CAS  Google Scholar 

  104. Khoronenkova SV, et al. ATM-dependent downregulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage. Mol Cell. 2012;45:801–13. doi:S1097-2765(12)00087-1 [pii]10.1016/j.molcel.2012.01.021.

    PubMed  CAS  Google Scholar 

  105. Cummins JM, et al. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature. 2004;428:1 p following 486. doi:10.1038/nature02501.

    Google Scholar 

  106. Meulmeester E, et al. Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2. Mol Cell. 2005;18:565–76. doi:S1097-2765(05)01287-6 [pii]10.1016/j.molcel.2005.04.024.

    PubMed  CAS  Google Scholar 

  107. Chen L, Gilkes DM, Pan Y, Lane WS, Chen J. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J. 2005;24:3411–22. doi:7600812 [pii]10.1038/sj.emboj.7600812.

    PubMed  CAS  Google Scholar 

  108. Okamoto K, et al. DNA damage-induced phosphorylation of MdmX at serine 367 activates p53 by targeting MdmX for Mdm2-dependent degradation. Mol Cell Biol. 2005;25:9608–20. doi:25/21/9608 [pii]10.1128/MCB.25.21.9608-9620.2005.

    PubMed  CAS  Google Scholar 

  109. Dornan D, et al. ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage. Science. 2006;313:1122–6. doi:313/5790/1122 [pii]10.1126/science.1127335.

    PubMed  CAS  Google Scholar 

  110. Leng RP, et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell. 2003;112:779–91. doi:S0092867403001934 [pii].

    PubMed  CAS  Google Scholar 

  111. Chen D, et al. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell. 2005;121:1071–83. doi:S0092-8674(05)00356-9 [pii]10.1016/j.cell.2005.03.037.

    PubMed  CAS  Google Scholar 

  112. Krummel KA, Lee CJ, Toledo F, Wahl GM. The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation. Proc Natl Acad Sci U S A. 2005;102:10188–93. doi:0503068102 [pii]10.1073/pnas.0503068102.

    PubMed  CAS  Google Scholar 

  113. Feng L, Lin T, Uranishi H, Gu W, Xu Y. Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Mol Cell Biol. 2005;25:5389–95. doi:25/13/5389 [pii]10.1128/MCB.25.13.5389-5395.2005.

    PubMed  CAS  Google Scholar 

  114. Sykes SM, et al. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell. 2006;24:841–51. doi:S1097-2765(06)00821-5 [pii]10.1016/j.molcel.2006.11.026.

    PubMed  CAS  Google Scholar 

  115. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation. Cell. 2008;133:612–26. doi:S0092-8674(08)00441-8 [pii]10.1016/j.cell.2008.03.025.

    PubMed  CAS  Google Scholar 

  116. Brooks CL, Gu W. New insights into p53 activation. Cell Res. 2010;20:614–21. doi:cr201053 [pii]10.1038/cr.2010.53.

    PubMed  CAS  Google Scholar 

  117. Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995;378:203–6. doi:10.1038/378203a0.

    PubMed  CAS  Google Scholar 

  118. Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature. 1995;378:206–8. doi:10.1038/378206a0.

    PubMed  CAS  Google Scholar 

  119. Parant J, et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet. 2001;29:92–5. doi:10.1038/ng714 [pii].

    PubMed  CAS  Google Scholar 

  120. Johnson TM, Hammond EM, Giaccia A, Attardi LD. The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality. Nat Genet. 2005;37:145–52. doi:ng1498 [pii]10.1038/ng1498.

    PubMed  CAS  Google Scholar 

  121. Li M, et al. Mono-versus polyubiquitination: differential control of p53 fate by Mdm2. Science. 2003;302:1972–5. doi:10.1126/science.1091362302/5652/1972 [pii].

    PubMed  CAS  Google Scholar 

  122. Marchenko ND, Wolff S, Erster S, Becker K, Moll UM. Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J. 2007;26:923–34. doi:7601560 [pii]10.1038/sj.emboj.7601560.

    PubMed  CAS  Google Scholar 

  123. Kruse JP, Gu W. MSL2 promotes Mdm2-independent cytoplasmic localization of p53. J Biol Chem. 2009;284:3250–63. doi:M805658200 [pii]10.1074/jbc.M805658200.

    PubMed  CAS  Google Scholar 

  124. Ahn BY, et al. Tid1 is a new regulator of p53 mitochondrial translocation and apoptosis in cancer. Oncogene. 2010;29:1155–66. doi:onc2009413 [pii]10.1038/onc.2009.413.

    PubMed  CAS  Google Scholar 

  125. Li M, et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature. 2002;416:648–53. doi:10.1038/nature737 [pii].

    PubMed  CAS  Google Scholar 

  126. Muscolini M, et al. The cancer-associated K351N mutation affects the ubiquitination and the translocation to mitochondria of p53 protein. J Biol Chem. 2011;286:39693–702. doi:M111.279539 [pii]10.1074/jbc.M111.279539.

    PubMed  CAS  Google Scholar 

  127. Sykes SM, Stanek TJ, Frank A, Murphy ME, McMahon SB. Acetylation of the DNA binding domain regulates transcription-independent apoptosis by p53. J Biol Chem. 2009;284:20197–205. doi:M109.026096 [pii]10.1074/jbc.M109.026096.

    PubMed  CAS  Google Scholar 

  128. Yamaguchi H, et al. p53 acetylation is crucial for its transcription-independent proapoptotic functions. J Biol Chem. 2009;284:11171–83. doi:M809268200 [pii]10.1074/jbc.M809268200.

    PubMed  CAS  Google Scholar 

  129. Pietsch EC, Sykes SM, McMahon SB, Murphy ME. The p53 family and programmed cell death. Oncogene. 2008;27:6507–21. doi:onc2008315 [pii]10.1038/onc.2008.315.

    PubMed  CAS  Google Scholar 

  130. Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 2006;13:962–72. doi:4401914 [pii]10.1038/sj.cdd.4401914.

    PubMed  CAS  Google Scholar 

  131. Pozniak CD, et al. An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science. 2000;289:304–6.

    PubMed  CAS  Google Scholar 

  132. Okada Y, et al. p53 gene family p51(p63)-encoded, secondary transactivator p51B(TAp63alpha) occurs without forming an immunoprecipitable complex with MDM2, but responds to genotoxic stress by accumulation. Exp Cell Res. 2002;276:194–200. doi:10.1006/excr.2002.5535S0014482702955357 [pii].

    PubMed  CAS  Google Scholar 

  133. Katoh I, Aisaki KI, Kurata SI, Ikawa S, Ikawa Y. p51A (TAp63gamma), a p53 homolog, accumulates in response to DNA damage for cell regulation. Oncogene. 2000;19:3126–30. doi:10.1038/sj.onc.1203644.

    PubMed  CAS  Google Scholar 

  134. Urist M, Tanaka T, Poyurovsky MV, Prives C. p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev. 2004;18:3041–54. doi:18/24/3041 [pii]10.1101/gad.1221004.

    PubMed  CAS  Google Scholar 

  135. Gressner O, et al. TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J. 2005;24:2458–71. doi:7600708 [pii]10.1038/sj.emboj.7600708.

    PubMed  CAS  Google Scholar 

  136. Zhu J, Jiang J, Zhou W, Chen X. The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer Res. 1998;58:5061–5.

    PubMed  CAS  Google Scholar 

  137. Melino G, et al. p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem. 2004;279:8076–83. doi:10.1074/jbc.M307469200 [pii].

    PubMed  CAS  Google Scholar 

  138. Sayan AE, et al. P73 and caspase-cleaved p73 fragments localize to mitochondria and augment TRAIL-induced apoptosis. Oncogene. 2008;27:4363–72. doi:onc200864 [pii]10.1038/onc.2008.64.

    PubMed  CAS  Google Scholar 

  139. John K, Alla V, Meier C, Putzer BM. GRAMD4 mimics p53 and mediates the apoptotic function of p73 at mitochondria. Cell Death Differ. 2011;18:874–86. doi:cdd2010153 [pii]10.1038/cdd.2010.153.

    PubMed  CAS  Google Scholar 

  140. Suh EK, et al. p63 protects the female germ line during meiotic arrest. Nature. 2006;444:624–8. doi:nature05337 [pii]10.1038/nature05337.

    PubMed  CAS  Google Scholar 

  141. Kerr JB, et al. DNA damage-induced primordial follicle oocyte apoptosis and loss of fertility require TAp63-mediated induction of Puma and Noxa. Mol Cell. 2012;48:343–52. doi:S1097-2765(12)00735-6 [pii]10.1016/j.molcel.2012.08.017.

    PubMed  CAS  Google Scholar 

  142. Flores ER, et al. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell. 2005;7:363–73. doi:S1535-6108(05)00092-9 [pii]10.1016/j.ccr.2005.02.019.

    PubMed  CAS  Google Scholar 

  143. Tomasini R, et al. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 2008;22:2677–91. doi:gad.1695308 [pii]10.1101/gad.1695308.

    PubMed  CAS  Google Scholar 

  144. Deyoung MP, Ellisen LW. p63 and p73 in human cancer: defining the network. Oncogene. 2007;26:5169–83. doi:1210337 [pii]10.1038/sj.onc.1210337.

    PubMed  CAS  Google Scholar 

  145. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol. 2002;3:221–7. doi:10.1038/ni0302-221 [pii].

    PubMed  CAS  Google Scholar 

  146. Rosette C, Karin M. Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science. 1996;274:1194–7.

    PubMed  CAS  Google Scholar 

  147. McCool KW, Miyamoto S. DNA damage-dependent NF-kappaB activation: NEMO turns nuclear signaling inside out. Immunol Rev. 2012;246:311–26. doi:10.1111/j.1600-065X.2012.01101.x.

    PubMed  Google Scholar 

  148. Miyamoto S. Nuclear initiated NF-kappaB signaling: NEMO and ATM take center stage. Cell Res. 2011;21:116–30. doi:cr2010179 [pii]10.1038/cr.2010.179.

    PubMed  CAS  Google Scholar 

  149. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132:344–62. doi:S0092-8674(08)00120-7 [pii]10.1016/j.cell.2008.01.020.

    PubMed  CAS  Google Scholar 

  150. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999;18:6853–66. doi:10.1038/sj.onc.1203239.

    PubMed  CAS  Google Scholar 

  151. Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. 2004;18:2195–224. doi:10.1101/gad.122870418/18/2195 [pii].

    PubMed  CAS  Google Scholar 

  152. Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S. Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell. 2003;115:565–76. doi:S009286740300895X [pii].

    PubMed  CAS  Google Scholar 

  153. Mabb AM, Wuerzberger-Davis SM, Miyamoto S. PIASy mediates NEMO sumoylation and NF-kappaB activation in response to genotoxic stress. Nat Cell Biol. 2006;8:986–93. doi:ncb1458 [pii]10.1038/ncb1458.

    PubMed  CAS  Google Scholar 

  154. Wu ZH, Shi Y, Tibbetts RS, Miyamoto S. Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli. Science. 2006;311:1141–6. doi:311/5764/1141 [pii]10.1126/science.1121513.

    PubMed  CAS  Google Scholar 

  155. Jin HS, et al. cIAP1, cIAP2, and XIAP act cooperatively via nonredundant pathways to regulate genotoxic stress-induced nuclear factor-kappaB activation. Cancer Res. 2009;69:1782–91. doi:0008-5472.CAN-08-2256 [pii]10.1158/0008-5472.CAN-08-2256.

    PubMed  CAS  Google Scholar 

  156. Hinz M, et al. A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-kappaB activation. Mol Cell. 2010;40:63–74. doi:S1097-2765(10)00710-0 [pii]10.1016/j.molcel.2010.09.008.

    PubMed  CAS  Google Scholar 

  157. Wu ZH, et al. ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress. Mol Cell. 2010;40:75–86. doi:S1097-2765(10)00712-4 [pii]10.1016/j.molcel.2010.09.010.

    PubMed  CAS  Google Scholar 

  158. Janssens S, Tschopp J. Signals from within: the DNA-damage-induced NF-kappaB response. Cell Death Differ. 2006;13:773–84. doi:4401843 [pii]10.1038/sj.cdd.4401843.

    PubMed  CAS  Google Scholar 

  159. Kasibhatla S, et al. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1. Mol Cell. 1998;1:543–51. doi:S1097-2765(00)80054-4 [pii].

    PubMed  CAS  Google Scholar 

  160. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–90. doi:S009286740300521X [pii].

    PubMed  CAS  Google Scholar 

  161. Biton S, Ashkenazi A. NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-alpha feedforward signaling. Cell. 2011;145:92–103. doi:S0092-8674(11)00175-9 [pii]10.1016/j.cell.2011.02.023.

    PubMed  CAS  Google Scholar 

  162. Janssens S, Tinel A, Lippens S, Tschopp J. PIDD mediates NF-kappaB activation in response to DNA damage. Cell. 2005;123:1079–92. doi:S0092-8674(05)01042-1 [pii]10.1016/j.cell.2005.09.036.

    PubMed  CAS  Google Scholar 

  163. Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science. 2004;304:843–6. doi:10.1126/science.1095432 [pii].

    PubMed  CAS  Google Scholar 

  164. Dorstyn L, et al. Caspase-2 deficiency promotes aberrant DNA-damage response and genetic instability. Cell Death Differ. 2012;19:1288–98. doi:cdd201236 [pii]10.1038/cdd.2012.36.

    PubMed  CAS  Google Scholar 

  165. Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science. 2000;288:874–7. doi:8502 [pii].

    PubMed  CAS  Google Scholar 

  166. Tenev T, et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell. 2011;43:432–48. doi:S1097-2765(11)00420-5 [pii]10.1016/j.molcel.2011.06.006.

    PubMed  CAS  Google Scholar 

  167. Ganten TM, et al. Enhanced caspase-8 recruitment to and activation at the DISC is critical for sensitisation of human hepatocellular carcinoma cells to TRAIL-induced apoptosis by chemotherapeutic drugs. Cell Death Differ. 2004;11 Suppl 1:S86–96. doi:10.1038/sj.cdd.4401437 [pii].

    PubMed  CAS  Google Scholar 

  168. Pop C, et al. FLIP(L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem J. 2011;433:447–57. doi:BJ20101738 [pii]10.1042/BJ20101738.

    PubMed  CAS  Google Scholar 

  169. Oberst A, et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 2011;471:363–7. doi:nature09852 [pii]10.1038/nature09852.

    PubMed  CAS  Google Scholar 

  170. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. doi:S0092-8674(11)00127-9 [pii]10.1016/j.cell.2011.02.013.

    PubMed  CAS  Google Scholar 

  171. Schmitt CA, et al. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell. 2002;1:289–98. doi:S1535610802000478 [pii].

    PubMed  CAS  Google Scholar 

  172. Junttila MR, Evan GI. p53—a Jack of all trades but master of none. Nat Rev Cancer. 2009;9:821–9. doi:nrc2728 [pii]10.1038/nrc2728.

    PubMed  CAS  Google Scholar 

  173. Bartkova J, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–70. doi:nature03482 [pii]10.1038/nature03482.

    PubMed  CAS  Google Scholar 

  174. Bartkova J, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–7. doi:nature05268 [pii]10.1038/nature05268.

    PubMed  CAS  Google Scholar 

  175. Gorgoulis VG, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005;434:907–13. doi:nature03485 [pii]10.1038/nature03485.

    PubMed  CAS  Google Scholar 

  176. Dominguez-Sola D, et al. Non-transcriptional control of DNA replication by c-Myc. Nature. 2007;448:445–51. doi:nature05953 [pii]10.1038/nature05953.

    PubMed  CAS  Google Scholar 

  177. Casper AM, Nghiem P, Arlt MF, Glover TW. ATR regulates fragile site stability. Cell. 2002;111:779–89. doi:S0092867402011133 [pii].

    PubMed  CAS  Google Scholar 

  178. Di Micco R, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 2006;444:638–42. doi:nature05327 [pii]10.1038/nature05327.

    PubMed  Google Scholar 

  179. d’Adda di Fagagna F, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426:194–8. doi:10.1038/nature02118 [pii].

    PubMed  Google Scholar 

  180. Martinez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer. 2011;11:161–76. doi:nrc3025 [pii]10.1038/nrc3025.

    PubMed  CAS  Google Scholar 

  181. Maser RS, DePinho RA. Connecting chromosomes, crisis, and cancer. Science. 2002;297:565–9. doi:10.1126/science.297.5581.565297/5581/565 [pii].

    PubMed  CAS  Google Scholar 

  182. Sfeir A, de Lange T. Removal of shelterin reveals the telomere end-protection problem. Science. 2012;336:593–7. doi:336/6081/593 [pii]10.1126/science.1218498.

    PubMed  CAS  Google Scholar 

  183. O’Driscoll M, Jeggo PA. The role of double-strand break repair—insights from human genetics. Nat Rev Genet. 2006;7:45–54. doi:nrg1746 [pii]10.1038/nrg1746.

    PubMed  Google Scholar 

  184. O’Driscoll M, et al. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell. 2001;8:1175–85. doi:S1097-2765(01)00408-7 [pii].

    PubMed  Google Scholar 

  185. Wang W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet. 2007;8:735–48. doi:nrg2159 [pii]10.1038/nrg2159.

    PubMed  CAS  Google Scholar 

  186. Savitsky K, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268:1749–53.

    PubMed  CAS  Google Scholar 

  187. Bell DW, et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science. 1999;286:2528–31. doi:8128 [pii].

    PubMed  CAS  Google Scholar 

  188. Stewart GS, et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell. 1999;99:577–87. doi:S0092-8674(00)81547-0 [pii].

    PubMed  CAS  Google Scholar 

  189. Carney JP, et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell. 1998;93:477–86. doi:S0092-8674(00)81175-7 [pii].

    PubMed  CAS  Google Scholar 

  190. Miki Y, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71.

    PubMed  CAS  Google Scholar 

  191. Wooster R, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378:789–92. doi:10.1038/378789a0.

    PubMed  CAS  Google Scholar 

  192. Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990;348:747–9. doi:10.1038/348747a0.

    PubMed  CAS  Google Scholar 

  193. O’Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet. 2003;33:497–501. doi:10.1038/ng1129 [pii].

    PubMed  Google Scholar 

  194. Barlow C, et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell. 1996;86:159–71. doi:S0092-8674(00)80086-0 [pii].

    PubMed  CAS  Google Scholar 

  195. Bassing CH, et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell. 2003;114:359–70. doi:S009286740300566X [pii].

    PubMed  CAS  Google Scholar 

  196. DiTullio Jr RA, et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol. 2002;4:998–1002. doi:10.1038/ncb892 [pii].

    PubMed  CAS  Google Scholar 

  197. Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer. 2012;12:587–98. doi:nrc3342 [pii]10.1038/nrc3342.

    PubMed  CAS  Google Scholar 

  198. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8:193–204. doi:nrc2342 [pii]10.1038/nrc2342.

    PubMed  CAS  Google Scholar 

  199. Martin SA, Lord CJ, Ashworth A. DNA repair deficiency as a therapeutic target in cancer. Curr Opin Genet Dev. 2008;18:80–6. doi:S0959-437X(08)00021-X [pii]10.1016/j.gde.2008.01.016.

    PubMed  CAS  Google Scholar 

  200. Letai AG. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer. 2008;8:121–32. doi:nrc2297 [pii]10.1038/nrc2297.

    PubMed  CAS  Google Scholar 

  201. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988;335:440–2. doi:10.1038/335440a0.

    PubMed  CAS  Google Scholar 

  202. Certo M, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell. 2006;9:351–65. doi:S1535-6108(06)00113-9 [pii]10.1016/j.ccr.2006.03.027.

    PubMed  CAS  Google Scholar 

  203. Del Gaizo Moore V, et al. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest. 2007;117:112–21. doi:10.1172/JCI28281.

    PubMed  CAS  Google Scholar 

  204. Ni Chonghaile T, et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science. 2011;334:1129–33. doi:science.1206727 [pii]10.1126/science.1206727.

    PubMed  Google Scholar 

  205. Kastan MB, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992;71:587–97. doi:0092-8674(92)90593-2 [pii].

    PubMed  CAS  Google Scholar 

  206. Armata HL, Garlick DS, Sluss HK. The ataxia telangiectasia-mutated target site Ser18 is required for p53-mediated tumor suppression. Cancer Res. 2007;67:11696–703. doi:67/24/11696 [pii]10.1158/0008-5472.CAN-07-1610.

    PubMed  CAS  Google Scholar 

  207. Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 1995;83:993–1000. doi:0092-8674(95)90214-7 [pii].

    PubMed  CAS  Google Scholar 

  208. Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D. Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol. 1999;1:20–6. doi:10.1038/8991.

    PubMed  CAS  Google Scholar 

  209. Kamijo T, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell. 1997;91:649–59. doi:S0092-8674(00)80452-3 [pii].

    PubMed  CAS  Google Scholar 

  210. Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 1999;13:2658–69.

    PubMed  CAS  Google Scholar 

  211. Westphal CH, et al. atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nat Genet. 1997;16:397–401. doi:10.1038/ng0897-397.

    PubMed  CAS  Google Scholar 

  212. Martins CP, Brown-Swigart L, Evan GI. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell. 2006;127:1323–34. doi:S0092-8674(06)01597-2 [pii]10.1016/j.cell.2006.12.007.

    PubMed  CAS  Google Scholar 

  213. Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature. 2006;443:214–7. doi:nature05077 [pii]10.1038/nature05077.

    PubMed  CAS  Google Scholar 

  214. Garcia-Cao I, et al. “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J. 2002;21:6225–35.

    PubMed  CAS  Google Scholar 

  215. Khan SH, Moritsugu J, Wahl GM. Differential requirement for p19ARF in the p53-dependent arrest induced by DNA damage, microtubule disruption, and ribonucleotide depletion. Proc Natl Acad Sci U S A. 2000;97:3266–71. doi:10.1073/pnas.050560997 [pii].

    PubMed  CAS  Google Scholar 

  216. Jeffers JR, et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell. 2003;4:321–8. doi:S1535610803002447 [pii].

    PubMed  CAS  Google Scholar 

  217. Villunger A, et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science. 2003;302:1036–8. doi:10.1126/science.1090072 [pii].

    PubMed  CAS  Google Scholar 

  218. Garrison SP, et al. Selection against PUMA gene expression in Myc-driven B-cell lymphomagenesis. Mol Cell Biol. 2008;28:5391–402. doi:MCB.00907-07 [pii]10.1128/MCB.00907-07.

    PubMed  CAS  Google Scholar 

  219. Michalak EM, et al. Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis. Cell Death Differ. 2009;16:684–96. doi:cdd2008195 [pii]10.1038/cdd.2008.195.

    PubMed  CAS  Google Scholar 

  220. Michalak EM, Villunger A, Adams JM, Strasser A. In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute. Cell Death Differ. 2008;15:1019–29. doi:cdd200816 [pii]10.1038/cdd.2008.16.

    PubMed  CAS  Google Scholar 

  221. Finnberg N, et al. DR5 knockout mice are compromised in radiation-induced apoptosis. Mol Cell Biol. 2005;25:2000–13. doi:25/5/2000 [pii]10.1128/MCB.25.5.2000-2013.2005.

    PubMed  CAS  Google Scholar 

  222. Chen L, et al. CD95 promotes tumour growth. Nature. 2010;465:492–6. doi:nature09075 [pii]10.1038/nature09075.

    PubMed  CAS  Google Scholar 

  223. Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell. 1995;82:675–84. doi:0092-8674(95)90039-X [pii].

    PubMed  CAS  Google Scholar 

  224. Jackson RJ, et al. p21Cip1 nullizygosity increases tumor metastasis in irradiated mice. Cancer Res. 2003;63:3021–5.

    PubMed  CAS  Google Scholar 

  225. Brady CA, et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell. 2011;145:571–83. doi:S0092-8674(11)00312-6 [pii]10.1016/j.cell.2011.03.035.

    PubMed  CAS  Google Scholar 

  226. Jiang D, et al. Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages. Proc Natl Acad Sci U S A. 2011;108:17123–8. doi:1111245108 [pii]10.1073/pnas.1111245108.

    PubMed  CAS  Google Scholar 

  227. Li T, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell. 2012;149:1269–83. doi:S0092-8674(12)00533-8 [pii]10.1016/j.cell.2012.04.026.

    PubMed  CAS  Google Scholar 

  228. Gottlieb E, Vousden KH. p53 regulation of metabolic pathways. Cold Spring Harb Perspect Biol. 2010;2:a001040. doi:cshperspect.a001040 [pii]10.1101/cshperspect.a001040.

    PubMed  Google Scholar 

  229. Ventura A, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445:661–5. doi:nature05541 [pii]10.1038/nature05541.

    PubMed  CAS  Google Scholar 

  230. Green DR. Cell competition: pirates on the tangled bank. Cell Stem Cell. 2010;6:287–8. doi:S1934-5909(10)00103-7 [pii]10.1016/j.stem.2010.03.006.

    PubMed  CAS  Google Scholar 

  231. Bondar T, Medzhitov R. p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell. 2010;6:309–22. doi:S1934-5909(10)00099-8 [pii]10.1016/j.stem.2010.03.002.

    PubMed  CAS  Google Scholar 

  232. Marusyk A, Porter CC, Zaberezhnyy V, DeGregori J. Irradiation selects for p53-deficient hematopoietic progenitors. PLoS Biol. 2010;8:e1000324. doi:10.1371/journal.pbio.1000324.

    PubMed  Google Scholar 

  233. Sperka T, Wang J, Rudolph KL. DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol. 2012;13:579–90. doi:nrm3420 [pii]10.1038/nrm3420.

    PubMed  CAS  Google Scholar 

  234. Zhao Z, et al. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev. 2010;24:1389–402. doi:24/13/1389 [pii]10.1101/gad.1940710.

    PubMed  CAS  Google Scholar 

  235. Cicalese A, et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell. 2009;138:1083–95. doi:S0092-8674(09)00840-X [pii]10.1016/j.cell.2009.06.048.

    PubMed  CAS  Google Scholar 

  236. Maryanovich M, et al. The ATM-BID pathway regulates quiescence and survival of haematopoietic stem cells. Nat Cell Biol. 2012;14:535–41. doi:ncb2468 [pii]10.1038/ncb2468.

    PubMed  CAS  Google Scholar 

  237. Zinkel SS, et al. A role for proapoptotic BID in the DNA-damage response. Cell. 2005;122:579–91. doi:S0092-8674(05)00641-0 [pii]10.1016/j.cell.2005.06.022.

    PubMed  CAS  Google Scholar 

  238. Kamer I, et al. Proapoptotic BID is an ATM effector in the DNA-damage response. Cell. 2005;122:593–603. doi:S0092-8674(05)00597-0 [pii]10.1016/j.cell.2005.06.014.

    PubMed  CAS  Google Scholar 

  239. Ito K, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature. 2004;431:997–1002. doi:nature02989 [pii]10.1038/nature02989.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baran, K., Rodriguez, D., Green, D. (2014). The DNA Damage Response Mediates Apoptosis and Tumor Suppression. In: Wu, H. (eds) Cell Death. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9302-0_7

Download citation

Publish with us

Policies and ethics