Skip to main content

Crystalline Functional Oxide Growth Methods

  • Chapter
  • First Online:
Integration of Functional Oxides with Semiconductors

Abstract

Epitaxial thin film deposition methods are the principal means by which functional oxide-on-semiconductor heterostructures are achieved. By adapting the concepts once limited only to the semiconductor field to oxide materials systems, new experimental platforms for integrating the two types of materials into a single structure with cooperative functionality are now starting to become routine. In this chapter, we give a brief outline of five different thin film deposition methods that have been demonstrated to be capable of growing epitaxial oxide thin films on a semiconductor substrate. We describe physical vapor deposition methods such as molecular beam epitaxy, pulsed laser deposition, and sputtering, as well as chemical vapor deposition methods, including metal-organic chemical vapor deposition and atomic layer deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.L. Smith, Thin-Film Deposition: Principles and Practice (McGraw-Hill, New York, 1995)

    Google Scholar 

  2. P.M. Martin (ed.), Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology (Elsevier, Amsterdam, 2010)

    Google Scholar 

  3. K. Seshan (ed.), Handbook of Thin-Film Deposition Processes and Techniques: Principles, Methods, Equipment and Applications (Noyes Publications/William Andrew Pub, Norwich, NY, 2002)

    Google Scholar 

  4. M. Ohring, Materials Science of Thin Films: Deposition and Structure (Academic Press, San Diego, CA, 2002)

    Google Scholar 

  5. W.A. Doolittle, A.G. Carver, W. Henderson, J. Vac. Sci. Technol. B 23, 1272 (2005)

    Article  Google Scholar 

  6. D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi, Y.H. Min-Lee, W.L. McLean, M. Croft, Appl. Phys. Lett. 51, 619 (1987)

    Article  Google Scholar 

  7. D.D. Berkley, B.R. Johnson, N. Anand, K.M. Beauchamp, L.E. Conroy, A.M. Goldman, J. Maps, K. Mauersberger, M.L. Mecartney, J. Morton, M. Tuominen, Y.-J. Zhang, IEEE Trans. Magn. 25, 2522 (1989)

    Article  Google Scholar 

  8. D.G. Schlom, J.H. Haeni, J. Lettieri, C.D. Theis, W. Tian, J.C. Jiang, X.Q. Pan, Mater. Sci. Eng. B 87, 282 (2001)

    Article  Google Scholar 

  9. A. Ohtomo, D.A. Muller, J.L. Grazul, H.Y. Hwang, Nature 419, 378 (2002)

    Article  Google Scholar 

  10. M. Henini (ed.), Molecular Beam Epitaxy: From Research to Mass Production (Elsevier, Oxford, UK, 2013)

    Google Scholar 

  11. R.F.C. Farrow (ed.), Molecular Beam Epitaxy: Applications to Key Materials (Noyes Publications, Park Ridge, NJ, 1995)

    Google Scholar 

  12. E. Parker, The Technology and Physics of Molecular Beam Epitaxy (Plenum Press, New York, 1985)

    Book  Google Scholar 

  13. R. Sutarto, S. Altendorf, B. Coloru, M. Moretti Sala, T. Haupricht, C. Chang, Z. Hu, C. Schüßler-Langeheine, N. Hollmann, H. Kierspel, H. Hsieh, H.-J. Lin, C. Chen, L. Tjeng, Phys. Rev. B 79, 205318 (2009)

    Article  Google Scholar 

  14. C.E.C. Wood, D. Desimone, K. Singer, G.W. Wicks, J. Appl. Phys. 53, 4230 (1982)

    Article  Google Scholar 

  15. G.J. Davies, D. Williams, III-V MBE Growth Systems, in The Technology and Physics of Molecular Beam Epitaxy, ed. by Parker. (Plenum Press, New York, 1985)

    Google Scholar 

  16. Kometani, Wiegmann, JVST 12, 933 (1975)

    Google Scholar 

  17. S. Hasegawa, S. Ino, Y. Yamamoto, H. Daimon, Jpn. J. Appl. Phys. 24, L387 (1985)

    Article  Google Scholar 

  18. P.G. Staib, J. Vac. Sci. Technol. B 29, 03C125 (2011)

    Article  Google Scholar 

  19. P. Staib, W. Tappe, J.P. Contour, J. Cryst. Growth 201–202, 45 (1999)

    Article  Google Scholar 

  20. “In situ cathodoluminescence,” SVT Associates Application Note. No. 1101 (1998), http://www.svta.com/uploads/documents/CL_Ap_Note_1101.pdf

  21. “kSA Bandit blackbody temperature measurement,” k-Space Associates Technology Overview Note (1998), http://www.k-space.com/wp-content/uploads/kSA_BandiT_Blackbody.pdf

  22. UVISEL In-Situ Spectroscopic Ellipsometer, Product Overview. Horiba Scientific, http://www.horiba.com/us/en/scientific/products/ellipsometers/in-situ-and-in-line/uvisel-in-situ/uvisel-in-situ-spectroscopic-ellipsometer-3718/

  23. D.M. Mattox, Handbook of Physical Vapor Deposition Processing (Noyes Publications, Westwood, NJ, 1998), pp. 273–275

    Google Scholar 

  24. R.E. Honig, D.A. Kramer, RCA Review 30, 285 (1969)

    Google Scholar 

  25. “Vapor Pressure Charts,” International Union for Vacuum Science, Technique and Applications, http://iuvsta.org/iuvsta2/index.php?id=643

  26. “Thin Film Evaporation Guide,” Vacuum Engineering and Materials Co., Inc., http://www.vem-co.com/sites/default/files/pdfs/VEM_Thin_Film_Evaporation_Guide.pdf

  27. “Deposition Techniques,” Kurt J. Lesker Company, http://www.lesker.com/newweb/deposition_materials/MaterialDeposition.cfm?pgid=0

  28. D.B. Chrisey, G.K. Hubler (eds.), Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994)

    Google Scholar 

  29. R. Eason (ed.), Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley-Interscience, Hoboken, NJ, 2007)

    Google Scholar 

  30. M.N.R. Ashfold, F. Claeyssens, G.M. Fuge, S.J. Henley, Chem. Soc. Rev. 33, 23 (2004)

    Article  Google Scholar 

  31. D.B. Chrisey, G.K. Hubler (eds.), Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994). Chap. 6, pp. 167–198

    Google Scholar 

  32. D.B. Chrisey, G.K. Hubler (eds.), Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994). Sec. 2.2, pp. 24–38

    Google Scholar 

  33. D.B. Chrisey, G.K. Hubler (eds.), Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994). Chap. 9, pp. 225–264

    Google Scholar 

  34. M.G. Norton, C.B. Carter, Physica C 172, 47 (1990)

    Article  Google Scholar 

  35. K. Wasa, M. Kitabatake, H. Adachi, Thin Film Materials Technology: Sputtering of Compound Materials (William-Andrew, New York, 2004)

    Google Scholar 

  36. D.M. Mattox, Handbook of Physical Vapor Deposition Processing (Noyes Publications, Westwood, NJ, 1998). Chap. 6, pp. 315–377

    Google Scholar 

  37. S.L. Rohde, in Sputter Deposition, ed. by ASM International Handbook Committee. ASM Handbook, vol. 5: Surface Engineering (ASM International, Materials Park, OH 1994)

    Google Scholar 

  38. P. Sigmund, Sputtering by Ion Bombardment: Theoretical Concepts, in Topics in Applied Physics, vol. 47: Sputtering by Particle Bombardment I (Springer-Verlag, Berlin, 1981)

    Google Scholar 

  39. J.H. Keller, W.B. Pennebaker, IBM J. Res. Dev. 23, 3 (1979)

    Article  Google Scholar 

  40. J.A. Thornton, J. Vac. Sci. Technol. 15, 171 (1978)

    Article  Google Scholar 

  41. M. Stepanova, S.K. Dew, J. Vac. Sci. Technol. A 19, 2805 (2001)

    Article  Google Scholar 

  42. J. Musil, P. Baroch, J. Vlček, K.H. Nam, J.G. Han, Thin Solid Films 475, 208 (2005)

    Article  Google Scholar 

  43. W. Gawalek, W. Michalke, H. Bruchlos, T. Eick, R. Hergt, G. Schmidt, Phys. Status Solidi (a) 109, 503 (1988)

    Article  Google Scholar 

  44. C.B. Eom, J.Z. Sun, B.M. Lairson, S.K. Streiffer, A.F. Marshall, K. Yamamoto, S.M. Anlage, J.C. Bravman, T.H. Geballe, S.S. Laderman, R.C. Taber, R.D. Jacowitz, Physica C 171, 354 (1990)

    Article  Google Scholar 

  45. A.C. Jones, M. Hitchman (eds.), Chemical Vapor Deposition: Precursors, Processes and Applications (RSC Publishing, Cambridge, 2009)

    Google Scholar 

  46. G.B. Stringfellow, Organometallic Vapor Phase Epitaxy, 2nd edn. (Academic Press, New York, 1999)

    Google Scholar 

  47. M.L. Hitchman, K.F. Jensen, Chemical Vapor Deposition (Academic Press, New York, 1993)

    Google Scholar 

  48. A.D. Berry, D.K. Gaskill, R.T. Holm, E.J. Cukauskas, R. Kaplan, R.L. Henry, Appl. Phys. Lett. 52, 1743 (1988)

    Article  Google Scholar 

  49. G.J.M. Dormans, P.J. van Veldhoven, M. de Keijser, J. Cryst. Growth 123, 537 (1992)

    Article  Google Scholar 

  50. A.C. Jones, M. Hitchman (eds.), Chemical Vapor Deposition: Precursors, Processes and Applications (RSC Publishing, Cambridge, 2009). Chap. 12

    Google Scholar 

  51. A.C. Jones, M. Hitchman (eds.), Chemical Vapor Deposition: Precursors, Processes and Applications (RSC Publishing, Cambridge, 2009). Chap. 11

    Google Scholar 

  52. A.C. Jones, M. Hitchman (eds.), Chemical Vapor Deposition: Precursors, Processes and Applications (RSC Publishing, Cambridge, 2009). Chap. 3

    Google Scholar 

  53. G.B. Stringfellow, in Crystal Growth of Electronic Materials, ed. by E. Kaldis (Elsevier, Amsterdam, 1985)

    Google Scholar 

  54. P.M. Martin (ed.), Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology (Elsevier, Amsterdam, 2010). Chap. 7

    Google Scholar 

  55. A.C. Jones, M. Hitchman (eds.), Chemical Vapor Deposition: Precursors, Processes and Applications (RSC Publishing, Cambridge, 2009). Chap. 5

    Google Scholar 

  56. B. Jalan, P. Moetakef, S. Stemmer, Appl. Phys. Lett. 95, 032906 (2009)

    Article  Google Scholar 

  57. B. Jalan, R. Engel-Herbert, N.J. Wright, S. Stemmer, J. Vac. Sci. Technol. A 27, 461 (2009)

    Article  Google Scholar 

  58. L.L.H. King, K.Y. Hsieh, D.J. Lichtenwalner, A.I. Kingon, Appl. Phys. Lett. 59, 3045 (1991)

    Article  Google Scholar 

  59. T. Suntola, J. Hyvarinen, Annu. Rev. Mater. Sci. 15, 177 (1985)

    Article  Google Scholar 

  60. M.T. Bohr, R.S. Chau, T. Ghani, K. Mistry, IEEE Spectrum 44, 29 (2007)

    Article  Google Scholar 

  61. M. Ritala, M. Leskela, in Handbook of Thin Film Materials, vol. 1, ed. by H.S. Nalwa (Academic Press, New York, 2002), pp. 103–159

    Google Scholar 

  62. A.C. Jones, M. Hitchman (eds.), Chemical Vapor Deposition: Precursors, Processes and Applications (RSC Publishing, Cambridge, 2009). Chap. 4

    Google Scholar 

  63. C.H.L. Goodman, M.V. Pessa, J. Appl. Phys. 60, R65 (1986)

    Article  Google Scholar 

  64. C.M. Brooks, L.F. Kourkoutis, T. Heeg, J. Schubert, D.A. Muller, D.G. Schlom, Appl. Phys. Lett. 94, 162905 (2009)

    Article  Google Scholar 

  65. M.B. Lee, H. Koinuma, J. Appl. Phys. 81, 2358 (1997)

    Article  Google Scholar 

  66. X. Wang, U. Helmersson, L.D. Madsen, I.P. Ivanov, P. Münger, S. Rudner, B. Hjörvarsson, J.-E. Sundgren, J. Vac. Sci. Technol. A 17, 564 (1999)

    Article  Google Scholar 

  67. S.R. Gilbert, B.W. Wessels, D.B. Studebaker, T.J. Marks, Appl. Phys. Lett. 66, 3298 (1995)

    Article  Google Scholar 

  68. C. Dubourdieu, H. Roussel, C. Jimenez, M. Audier, J.P. Sénateur, S. Lhostis, L. Auvray, F. Ducroquet, B.J. O’Sullivan, P.K. Hurley, S. Rushworth, L. Hubert-Pfalzgraf, Mater. Sci. Eng. B 118, 105 (2005)

    Article  Google Scholar 

  69. M. Vehkamäki, T. Hänninen, M. Ritala, M. Leskelä, T. Sajavaara, E. Rauhala, J. Keinonen, Chem. Vap. Depos. 7, 75 (2001)

    Article  Google Scholar 

  70. M.D. McDaniel, A. Posadas, T.Q. Ngo, A. Dhamdhere, D.J. Smith, A.A. Demkov, J.G. Ekerdt, J. Vac. Sci. Technol. A 31, 01A136 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Demkov, A.A., Posadas, A.B. (2014). Crystalline Functional Oxide Growth Methods. In: Integration of Functional Oxides with Semiconductors. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9320-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9320-4_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9319-8

  • Online ISBN: 978-1-4614-9320-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics