Skip to main content

Algae Farming and Its Bio-Products

  • Chapter
  • First Online:
Plants and BioEnergy

Part of the book series: Advances in Plant Biology ((AIPB,volume 4))

Abstract

Many expect algae to contribute to food, feed, health, and fuel, as well as to remove or transform pollutants in water or air. But what did we really achieve after several decades of research and development? What ended up being commercialized and consumed in large volumes? We try and shed light on these questions by surveying and assessing the current state of algae uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bangalore M, Hochman G, Zilberman D (2012) Differences in the adoption of agricultural anaerobic digestion in Europe and the United States. Working paper

    Google Scholar 

  • Ben-Amotz A, Avron M (1980) Glycerol, \( \upbeta \)-carotene, and dry algae meal production by commercial cultivation of Dunaliella. In: Shelef G, Soeded SJ (eds) Algae biomass. Elsevier North-Holland Biomedical Press, Oxford, pp 603–610

    Google Scholar 

  • Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report (No. DOE/PC/93204--T5). Department of Civil Engineering, Pitburgh Energy Technology Centre, US. Available at http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=493389

  • Borowitzka MA, Borowitzka LJ (1987) Vitamins and fine chemicals from micro-algae. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, New York

    Google Scholar 

  • Borowitzka LJ, Brown AD (1974) The salt relation of marine and halophilic species of Dunalialla: the role of glycerol as a compatible solute. Arch Icrobiol 96:37–52

    Article  CAS  Google Scholar 

  • Carlsson AS, Bowles DJ (2007) Micro-and macro-algae: utility for Industrial applications: outputs from the EPOBIO project, Sep 2007. CPL Press: Science Publisher, UK. (Report)

    Google Scholar 

  • Chapman VJ (1970) Seaweed and the uses. Methuen and Company, London

    Google Scholar 

  • Choi SL, Suh IS, Lee CG (2003) Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzym Micro Technol 33:403–409

    Article  CAS  Google Scholar 

  • Chynoweth DP (2002) Review of biomethane from marine biomass. In: Reith JH, Hal JW, Lenstra WJ (eds) History, results and conclusions of the “US Marine Biomass Energy Program”, (1968 to 1990), 194 pp

    Google Scholar 

  • Costa JAV, Colla LM, Duarte P (2003) Spirulina platensis growth in open raceway ponds using fresh water supplemented with carbon, nitrogen and metal ions. Zeits Naturforsch, C-A J Biosci 58:76–80

    Google Scholar 

  • Del Campo JA, Garcia-Gonzales M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174

    Article  PubMed  CAS  Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Conserv Mgmt 52:163–170

    Article  Google Scholar 

  • FAO Fisheries and Aquaculture Secretariat (2010) The state of world fisheries and aquaculture 2010. Food and Agriculture Organization of the United Nation, Rome, Italy. Available at http://41.215.122.106/dspace/handle/0/210

  • Fuentes MMR, Sanchez JLG, Sevilla JMF, Fernandez FGA, Perez JAS, Grima EM (1999) Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: quantitative analysis of the daily cyclic variation of culture parameters. J Biotechnol 70:271–288

    Article  Google Scholar 

  • Gallagher Brian J (2011) The economics of producing biodiesel from algae. Renewable Energy 36(1):158–162

    Article  CAS  Google Scholar 

  • Hochman G, Trachtenberg MC, Zilberman D (Forthcoming) Algae crops: co-production of algae biofuels. In: Dierig D, Cruz VM (eds) Industrial crops: breeding for bioenergy and bioproducts. Springer Science, New York

    Google Scholar 

  • Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up and future prospects. Biotechnol Bioeng 81:193–210

    Article  PubMed  CAS  Google Scholar 

  • Koren A, Amit U, Ilani T, Black B, Kahvvan A (1988) Research activities in the microalgae growth in the Arava R&D center for aquaculture. Ein Yahav, Israel. (Report)

    Google Scholar 

  • Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Article  Google Scholar 

  • Li Yanqun, Horsman Mark, Nan Wu, Lan Christopher Q, Dubois-Calero Nathalie (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820

    PubMed  CAS  Google Scholar 

  • Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Robert E. Kennedy Library, Cal Poly, San Luis Obispo, CA. Available at http://digitalcommons.calpoly.edu/cenv_fac/188/

  • Luning K, Pang S (2003) Mass cultivation of seaweeds: current aspects and approaches. J Appl Phycol 15:115–119

    Article  Google Scholar 

  • McHugh DJ (2003) A guide to the seaweed industry. FAO fisheries technical paper no. 441, Rome, FAO

    Google Scholar 

  • Miao X, Wu Q, Yang CY (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrol 71:855–863

    Article  CAS  Google Scholar 

  • Molina Grima EM, Perez JAS, Camacho FG, Sevilla JMF, Fernandez FGA (1994) Effect of growth-rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis galbana in chemostat culture. Appl Microbiol Biotechnol 41:23–27

    Article  Google Scholar 

  • Munoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  PubMed  CAS  Google Scholar 

  • Nishino H, Murakoshi M, Ii T, Takemura M, Kuchide M, Kanazawa M, Mou XY, Wada S, Masuda M, Ohsaka Y, Yogosawa S, Satomi Y, Jinno K (2002) Carotenoids in cancer chemoprevention. Cancer Metastasis Rev 21(3–4):257–264

    Article  PubMed  CAS  Google Scholar 

  • Oswald WJ (1987a) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro algal biotechnology. Cambridge University Press, New York, pp 305–328

    Google Scholar 

  • Oswald WJ (1987b) Large scale algal culture systems. In: Borowitzka MA, Borowitzka LJ (eds) Micro algal biotechnology. Cambridge University Press, New York, pp 357–394

    Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  PubMed  CAS  Google Scholar 

  • Renn EW (1984) Agar and agarose: the indispensible partners in biotechnology. I&EC Res Devel 23:17–21

    Article  CAS  Google Scholar 

  • Richmond A (2004) Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512:33–37

    Article  Google Scholar 

  • Sheehan John, Dunahay Terri, Benemann John, Roessler Paul (1998) A look back at the US department of energy’s aquatic species program: biodiesel from algae, vol 328. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  • Shelef G (1982) High-rate algae ponds for waste water treatment and protein production. Water Sci Technol 14:439–452

    CAS  Google Scholar 

  • Simopoulos AP (1991) Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 54(3):438–463

    PubMed  CAS  Google Scholar 

  • Vonshak A (1997) Outdoor mass production of Spirulina: the basic concept. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis, London, pp 79–99

    Google Scholar 

  • Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40:3627–3652

    Article  CAS  Google Scholar 

  • Wen ZY, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotech Adv 21:273–294

    Article  CAS  Google Scholar 

  • Wiley PE, Campbell JE, McKuin B (2011) Production of biodiesel and biogas from algae: a review of process train options. Water Environ Res 83(4):326–338

    Article  PubMed  CAS  Google Scholar 

  • Yetir JZ (1988) Clinical application of fish oils. J Amer Med Assoc 260:665–670

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gal Hochman .

Editor information

Editors and Affiliations

Appendix A: Interviews

Appendix A: Interviews

Abuoav J (Dr.,). Chief of Surgery, Mount Zion University, San Francisco, California.

Amit U. Ein Yahav, Arava, Israel.

Arad S (Dr.). Ben Gurion University, Box 1025, Beer Sheva, Israel, 84110.

Borowitzka M. School of Environmental and Life Sciences, Murdoch University, Perth, Australia.

Ben-Amotz A (Professor). Israel Oceanographic Institute, Tel Shikmona, P.O. B. 8030, 31080 Haifa, Israel.

Foget RD. Manager Marketing Services, Bio Products, FMC Corporation, Marine Colloids Division, 2000 Market Street, Philadelphia, PA, 19103.

Glazer AN (Professor). Department of Microbiology and Immunology, University of California, Berkley, California, 94720.

Guron Y. B.A.R.D. Fund, P.O. Box Bet Dagan 50250, Israel.

Martinez W. USDA-ARS, Room 226, Building 005, BARC-West, Beltsville, Maryland, 20705.

Neushul M (Professor). Marine Science Institute, University of California, William J Department of Civil Engineering, University of California, Berkley, California, 94720.

Oswald WJ Department of Civil Engineering, University of California, Berkley, California, 94720.

Ramus J. Duke University Marine Lab., Beaufort, North Carolina, 28516.

Renn DW. (Dr.). FMC Corporation, 5 Maple Street, Rockland, Maine, 04841.

Sfat MR. Bio-Technical Resources Inc., 1035 South Seventh Street, Mainitowoc, Wisconsin, 54220.

Vreeland V (Dr.). Department of Biology, University of California, Berkley, California, 94720.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hochman, G., Zilberman, D. (2014). Algae Farming and Its Bio-Products. In: McCann, M., Buckeridge, M., Carpita, N. (eds) Plants and BioEnergy. Advances in Plant Biology, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9329-7_4

Download citation

Publish with us

Policies and ethics