Skip to main content

Abstract

In this chapter, after overviewing elementary probability, two-stage programming and chance constrained programming are explained in detail. In two-stage programming, a shortage or an excess arising from the violation of the constraints is penalized, and then the expectation of the amount of the penalties for the constraint violation is minimized. In contrast, chance constrained programming admits random data variations and permits constraint violations up to specified probability limits, and its formulation is somewhat variable, including the expectation model, the variance model, the probability model, and the fractile model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although the term random variable is somewhat confusing, it is well established and so it will be used in this book. However, a random function would be more appropriate, since a random variable is really a real-valued function whose domain is a sample space.

  2. 2.

    VBA (visual basic for applications) is a programming language for Excel, and then one can code a procedure in Excel.

References

  • Beale, E. M. L. (1955). On minimizing a convex function subject to linear inequalities. Journal of the Royal Statistical Society, B17, 173–184.

    Google Scholar 

  • Beale, E. M. L., Forrest, J. J. H., & Taylor, C. J. (1980). Multi-time-period stochastic programming. In M. A. H. Dempster (Ed.), Stochastic programming (pp. 387–402). New York: Academic.

    Google Scholar 

  • Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. London: Springer.

    Google Scholar 

  • Charnes, A., & Cooper, W. W. (1959). Chance constrained programming. Management Science, 6, 73–79.

    Article  Google Scholar 

  • Charnes, A., & Cooper, W. W. (1963). Deterministic equivalents for optimizing and satisficing under chance constraints. Operations Research, 11, 18–39.

    Article  Google Scholar 

  • Chung, K. L. (1974). Elementary probability theory with stochastic processes. Berlin: Springer.

    Book  Google Scholar 

  • Cramér, H. (1999). Mathematical methods of statistics. Princeton Landmarks in Mathematics and Physics. Princeton: Princeton University Press.

    Google Scholar 

  • Dantzig, G. B. (1955). Linear programming under uncertainty. Management Science, 1, 197–206.

    Article  Google Scholar 

  • Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science Ser A, 13, 492–498.

    Google Scholar 

  • Feller, W. (1968). An introduction to probability theory and its applications (3rd ed., Vol. 1). New York: Wiley.

    Google Scholar 

  • Feller, W. (1978). An introduction to probability theory and its applications (2nd ed., Vol. 2). New York: Wiley.

    Google Scholar 

  • Fletcher, R. (1980). Practical methods of optimization (Vol. 2). New York: Wiley.

    Google Scholar 

  • Gartska, S. J. (1980a). The economic equivalence of several stochastic programming models. In M. A. H. Dempster (Ed.), Stochastic programming (pp. 83–91). New York: Academic.

    Google Scholar 

  • Gartska, S. J. (1980b). An economic interpretation of stochastic programs. Mathematical Programming, 18, 62–67.

    Article  Google Scholar 

  • Gartska, S. J., & Wets, R. J-B. (1974). On decision rules in stochastic programming. Mathematical Programming, 7, 117–143.

    Article  Google Scholar 

  • Geoffrion, A. M. (1967). Stochastic programming with aspiration or fractile criteria. Management Science, 13, 672–679.

    Article  Google Scholar 

  • Gill, P. E., Murray, W., & Wright, M. H. (1981). Practical optimization. London: Academic.

    Google Scholar 

  • Johnson, N. L., & Kotz, S. (1972). Distributions in statistics: Continuous multivariate distributions. New York: Wiley.

    Google Scholar 

  • Kall, P. (1976). Stochastic linear programming. Berlin: Springer.

    Book  Google Scholar 

  • Kall, P., & Mayer, J. (2005). Stochastic linear programming: Models, theory, and computation. New York: Springer.

    Google Scholar 

  • Kataoka, S. (1963). A stochastic programming model. Econometrica, 31, 181–196.

    Article  Google Scholar 

  • Kotz, S., Balakrishnan, N., & Johnson, N. L. (2000). Continuous multivariate distributions, volume 1, models and applications (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Louveaux, F. V. (1980). A solution method for multistage stochastic programs with recourse with applications to an energy investment problem. Operations Research, 27, 889–902.

    Article  Google Scholar 

  • Miller, B. L., & Wagner, H. M. (1965). Chance constrained programming with joint constraints. Operations Research, 3, 930–945.

    Article  Google Scholar 

  • Powell, M. J. D. (1983). Variable metric methods for constrained optimization. In A. Bachem, M. Grotschel, & B. Korte (Eds.), Mathematical programming: The state of the art (pp. 288–311). New York: Springer.

    Chapter  Google Scholar 

  • Sengupta, J. (1972). Stochastic programming: Methods and applications. Amsterdam: North-Holland.

    Google Scholar 

  • Stancu-Minasian, I. M. (1984). Stochastic programming with multiple objective functions. Dordrecht: D. Reidel Publishing Company.

    Google Scholar 

  • Stancu-Minasian, I. M., & Wets, M. J. (1976). A research bibliography in stochastic programming, 1955–1975. Operations Research, 24, 1078–1119.

    Article  Google Scholar 

  • Symonds, G. H. (1968). Chance-constrained equivalents of stochastic programming problems. Operations Research, 16, 1152–1159.

    Article  Google Scholar 

  • Vajda, S. (1972). Probabilistic programming. New York: Academic.

    Google Scholar 

  • Walkup, D. W., & Wets, R. (1967). Stochastic programs with recourse. SIAM Journal on Applied Mathematics, 15, 139–162.

    Article  Google Scholar 

  • Wets, R. (1974). Stochastic programs with fixed recourse: the equivalent deterministic program. SIAM Review, 16, 309–339.

    Article  Google Scholar 

  • Williams, A. C. (1965). On stochastic linear programming. SIAM Journal Applied Mathematics, 13, 927–940.

    Article  Google Scholar 

  • Yano, H. (2012). Interactive fuzzy decision making for multiobjective stochastic linear programming problems with variance-covariance matrices. Proceedings of 2012 IEEE international conference on systems, man, and cybernetics (pp. 97–102).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sakawa, M., Yano, H., Nishizaki, I. (2013). Stochastic Linear Programming. In: Linear and Multiobjective Programming with Fuzzy Stochastic Extensions. International Series in Operations Research & Management Science, vol 203. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9399-0_5

Download citation

Publish with us

Policies and ethics