Skip to main content

WBAN Transceiver Design

  • Chapter
  • First Online:
CMOS IC Design for Wireless Medical and Health Care

Abstract

The WBAN (wireless body area networks) transceivers are the key part of a wireless medical/health care system. Design considerations, such as the frequency band selection and the link budget, of the narrow band short range wireless transceivers will be discussed for both the SIDs and the PBS. Three low-power WBAN transceiver design examples will be presented to illustrate the design principles, including a 2.4GHz SID transmitter with 1Mbps ASK modulation, a 400MHz transceiver for implantable SIDs with 3Mbps MSK TX, and a multiband multimode PBS transceiver which covers the 400 MHz and 2.4 GHz frequency bands. The DC offset cancellation (DCOC) circuit for the low-power zero-IF receiver design will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoo H-J, Burdett A. ES4: body area network: technology, solutions, and standardization. In: 2011 IEEE international solid-state circuits conference, ISSCC; 2011. p. 531.

    Google Scholar 

  2. Wang Z, Jiang H, Xie X, Chen H, Chi B, and Zhang C. Key technologies in the integrated circuit design for the construction of a wireless healthcare system. In: 2011 IEEE international Midwest symposium on circuits and systems, MWSCAS; 2011. p. 1–4.

    Google Scholar 

  3. IEEE Computer Society, standard for local and metropolitan area networks—part 15.6: wireless body area networks, IEEE 802 LAN/MAN Standards Committee; 2012. http://www.ieee.org

  4. Latré B, Braem B, Moerman I, Blondia C, Demeester P. A survey on wireless body area networks. Wirel Netw. 2010;17:1–18.

    Article  Google Scholar 

  5. IEEE Computer Society, standard for information technology—part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs), IEEE 802 LAN/MAN Standards Committee; 2006. http://www.ieee.org

  6. Astrin AW, Bang H. Standardrization for body area networks. IEICE Trans Commun. 2009;92-B:366–72.

    Article  Google Scholar 

  7. Bradley PD. Wireless medical implant technology—recent advances and future developments. In: 2011 IEEE European solid-state circuits conference, ESSCIRC; 2011. p. 37–41.

    Google Scholar 

  8. Kim S, Lepkowski W, Wilk SJ, Thornton TJ, Bakkaloglu B. A low-power CMOS BFSK transceiver for health monitoring systems. In: 2011 IEEE biomedical circuits and systems conference, BioCAS; 2011. p. 157–60.

    Google Scholar 

  9. Wong ACW, Dawkins M, Devita G, Kasparidis N, Katsiamis A, King O, et al. A 1 V 5 mA multimode IEEE 802.15.6/Bluetooth low-energy WBAN transceiver for biotelemetry applications. IEEE J Solid-State Circuits. 2013;48:186–98.

    Article  Google Scholar 

  10. Retz G, Shanan H, Mulvaney K, O’Mahony S, Chanca M, Crowley P, et al. A highly integrated low-power 2.4GHz transceiver using a direct-conversion diversity receiver in 0.18um CMOS for IEEE802.15.4 WPAN. In: 2009 IEEE international solid-state circuits conference, ISSCC; 2009. p. 414–5, 415a.

    Google Scholar 

  11. Raja MK, Chen X, Lei YD, Zhao B, Yeung BC, Yuan X. A 18 mW Tx, 22 mW Rx transceiver for 2.45 GHz IEEE 802.15.4 WPAN in 0.18-um CMOS. In: 2010 IEEE Asian solid state circuits conference, A-SSCC; 2010. p. 1–4.

    Google Scholar 

  12. Kwon Y-I, Park S-G, Park T-J, Cho K-S, Lee H-Y. An ultra low-power CMOS transceiver using various low-power techniques for LR-WPAN applications. IEEE Trans Circuits Syst I Regul Pap. 2012;59:324–36.

    Article  MathSciNet  Google Scholar 

  13. Borremans J, Mandal G, Giannini V, Debaillie B, Ingels M, Sano T, et al. A 40 nm CMOS 0.4-6 GHz receiver resilient to out-of-band blockers. IEEE J Solid-State Circuits. 2011;46:1659–71.

    Article  Google Scholar 

  14. Jiang H, Li F, Chen X, Ning Y, Zhang X, Zhang B, et al. A SoC with 3.9mW 3Mbps UHF transmitter and 240uW MCU for capsule endoscope with bidirectional communication. In: 2010 IEEE Asian solid state circuits conference, A-SSCC; 2010. p. 1–4.

    Google Scholar 

  15. Cripps SC. Advanced techniques in RF power amplifier design. London: Artech House; 2002.

    Google Scholar 

  16. Kim B, Helman D, Gray PR. A 30-MHz hybrid analog/digital clock recovery circuit in 2-mm CMOS. IEEE J Solid-State Circuits. 1990;25(6):1385–94.

    Article  Google Scholar 

  17. Park K, Jeong C, Park J, Lee J, Jo J, Yoo C. Current reusing VCO and divide-by-two frequency divider for quadrature LO generation. IEEE Microw Wirel Compon Lett. 2008;18(6):413–5.

    Article  Google Scholar 

  18. Wiser RF, Zargari M, Su DK, Wooley BA. A 5-GHz wireless LAN transmitter with integrated tunable high-Q RF filter. IEEE J Solid-State Circuits. 2009;44:2114–25.

    Article  Google Scholar 

  19. Belmas F, Hameau F, Fournier J. A low power inductorless LNA with double Gm enhancement in 130 nm CMOS. IEEE J Solid-State Circuits. 2012;47:1094–103.

    Article  Google Scholar 

  20. Tan SC-G, Song F, Zheng R, Cui J, Yao G, Tang L, et al. An ultra-low-cost high-performance Bluetooth SoC in 0.11-um CMOS. IEEE J Solid-State Circuits. 2012;47:2665–77.

    Article  Google Scholar 

  21. Kaukovuori J, Stadius K, Ryynanen J, Halonen K. Analysis and design of passive polyphase filters. IEEE Trans Circuits Syst I Regul Pap. 2008;55:3023–37.

    Article  MathSciNet  Google Scholar 

  22. Zhang L, Jiang H, Li F, Dong J, Cui J, Zhang C, et al. DC offset calibration method for zero-IF receiver removing the PGA-gain-correlated offset residue. AEÜ—Int J Electron Commun. 2013;67:578–84. http://dx.doi.org/10.1016/j.aeue.2012.12.010

  23. Gao J, Jiang H, Zhang L, Dong J, and Wang Z. A programmable low-pass filter with adaptive miller compensation for zero-IF transceiver. In: 2012 IEEE international midwest symposium on circuits and systems, MWSCAS; 2012. p. 226–9.

    Google Scholar 

  24. Zhang L, Jiang H, Wei J, Dong J, Li W, Gao J, et al. A low-power reconfigurable multi-band sliding-IF transceiver for WBAN hubs in 0.18um CMOS. In: 2010 IEEE Asian solid state circuits conference, A-SSCC; 2012. p. 77–80.

    Google Scholar 

  25. Ingels M, Giannini V, Borremans J, Mandal G, Debaillie B, Van Wesemael P, et al. A 5 mm2 40 nm LP CMOS transceiver for a software-defined radio platform. IEEE J Solid-State Circuits. 2010;45:2794–806.

    Article  Google Scholar 

  26. Mak P-I, et al. On the design of a programmable-gain amplifier with built-in compact DC-offset cancellers for very low-voltage WLAN systems. IEEE Trans Circuits Syst I Regul Pap. 2008;55(2):496–509.

    Article  MathSciNet  Google Scholar 

  27. Oh S-M, Park K-S, Yoo H-H, Na Y-S, Kim, T-S. A design of DC offset canceller using parallel compensation. In: IEEE international symposium on circuits and systems, New Orleans; 2007. p. 1685–8.

    Google Scholar 

  28. Zheng Y, et al. A CMOS VGA with DC offset cancellation for direct-conversion receivers. IEEE Trans Circuits Syst I Regul Pap. 2008;56(1):103–13.

    Article  Google Scholar 

  29. Shih H-Y, et al. A 250 MHz 14 dB-NF 73 dB-gain 82 dB-DR analog baseband chain with digital-assisted DC-offset calibration for ultra-wideband. IEEE J Solid-State Circuits. 2010;45(2):338–50.

    Article  Google Scholar 

  30. Lijun Y, et al. A low power mixed signal DC offset calibration circuit for direct conversion receiver applications. J Semiconductors. 2010;32(12):338–50.

    Google Scholar 

  31. Razavi B. Design of analog CMOS integrator circuits. New York: McGraw-Hill; 2001.

    Google Scholar 

  32. Zhang L, et al. DC offset calibration method for zero-IF receiver removing the PGA-gain-correlated offset residue. AEU—Int J Electron Commun. 2013;67(7):578–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, Z., Jiang, H., Chen, H. (2014). WBAN Transceiver Design. In: CMOS IC Design for Wireless Medical and Health Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9503-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9503-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9502-4

  • Online ISBN: 978-1-4614-9503-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics