Skip to main content

Schizophrenia and Bipolar Disorder

  • Chapter
  • First Online:
Behavior Genetics of Psychopathology

Part of the book series: Advances in Behavior Genetics ((AIBG,volume 2))

  • 2077 Accesses

Abstract

Research into the genetic basis of schizophrenia and bipolar disorder is advancing rapidly. In quantitative genetics, the evidence for substantial heritability has been further substantiated by large-scale analysis of a range of types of relatives, and there is a lengthening catalogue of other psychotic and nonpsychotic disorders that are likely to share some genetic risk factors with schizophrenia and bipolar disorder. In molecular genetics, genome-wide association studies are providing evidence of many common genetic variants which each make a small contribution to risk. At the chromosomal level, studies of copy number variants are showing rarer variants which have a larger effect on risk. Both types of study are reinforcing the theme that schizophrenia and bipolar disorder share some genetic influences with other disorders. In an effort to understand the genetics of schizophrenia and bipolar disorder by going beyond the diagnosis, there has been interest in both additional clinical phenotypes and the use of endophenotypes. Work is also beginning in the use of next-generation genetic sequencing to find new genetic variants and in moving further downstream to find the functional consequences of risk variants. In this chapter, we give a broad overview of these recent research developments against the background of successive phases of previous research and consider the probable next stages of research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, M. G., Cohen, S., & Pollin, W. (1972). Schizophrenia in veteran twins: A diagnostic review. American Journal of Psychiatry, 128(8), 939–945.

    PubMed  Google Scholar 

  • American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (DSM-IV). Washington, DC: APA.

    Google Scholar 

  • Andreasen, N. C., Arndt, S., Alliger, R., Miller, D., & Flaum, M. (1995). Symptoms of schizophrenia: Methods, meanings, and mechanisms. Archives of General Psychiatry, 52(5), 341–351.

    PubMed  Google Scholar 

  • Barnett, J. H., & Smoller, J. W. (2009). The genetics of bipolar disorder. Neuroscience, 164(1), 331–343.

    PubMed Central  PubMed  Google Scholar 

  • Baron, M., & Risch, N. (1987). The spectrum concept of schizophrenia: Evidence for a genetic-environmental continuum. Journal of Psychiatric Research, 21(3), 257–267.

    PubMed  Google Scholar 

  • Bassett, A. S., Chow, E. W., & Weksberg, R. (2000). Chromosomal abnormalities and schizophrenia. American Journal of Medical Genetics, 97(1), 45–51.

    PubMed Central  PubMed  Google Scholar 

  • Belmonte Mahon, P., Pirooznia, M., Goes, F. S., Seifuddin, F., Steele, J., Lee, P. H., et al. (2011). Genome-wide association analysis of age at onset and psychotic symptoms in bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 156(3), 370–378.

    Google Scholar 

  • Bertelsen, A., & Gottesman, I. I. (1995). Schizoaffective psychoses: Genetical clues to classification. American Journal of Medical Genetics, 60(1), 7–11.

    PubMed  Google Scholar 

  • Bertelsen, A., Harvald, B., & Hauge, M. (1977). A Danish twin study of manic- depressive disorders. The British Journal of Psychiatry, 130(4), 330–351.

    PubMed  Google Scholar 

  • Blackwood, D. H. R., Fordyce, A., Walker, M. T., St Clair, D. M., Porteous, D. J., & Muir, W. J. (2001). Schizophrenia and affective disorders cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: Clinical and P300 findings in a family. The American Journal of Human Genetics, 69(2), 428–433.

    Google Scholar 

  • Bray, N. J. (2008). Gene expression in the etiology of schizophrenia. Schizophrenia Bulletin, 34(3), 412–418.

    PubMed  Google Scholar 

  • Breuer, R., Hamshere, M. L., Strohmaier, J., Mattheisen, M., Degenhardt, F., Meier, S., et al. (2011). Independent evidence for the selective influence of GABAA receptors on one component of the bipolar disorder phenotype. Molecular Psychiatry, 16(6), 587–589.

    PubMed  Google Scholar 

  • Brockington, I. F., & Meltzer, H. Y. (1983). The nosology of schizoaffective psychosis. Psychiatric Developments, 1(4), 317–338.

    PubMed  Google Scholar 

  • Burbach, J. P. H., & van der Zwaag, B. (2009). Contact in the genetics of autism and schizophrenia. Trends in Neurosciences, 32(2), 69–72.

    PubMed  Google Scholar 

  • Burke, J. G., Murphy, B. M., Bray, J. C., Walsh, D., & Kendler, K. S. (1996). Clinical similarities in siblings with schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 67(3), 239–243.

    Google Scholar 

  • Cannon, T. D., Kaprio, J., Lonnqvist, J., Huttunen, M., & Koskenvuo, M. (1998). The genetic epidemiology of schizophrenia in a Finnish twin cohort: A population- based modeling study. Archives of General Psychiatry, 55(1), 67–74.

    PubMed  Google Scholar 

  • Cardno, A. G., & Gottesman, I. I. (2001). Twin studies of schizophrenia: From bow and arrow concordances to Star Wars Mx and functional genomics. American Journal of Medical Genetics, 97(1), 12–17.

    Google Scholar 

  • Cardno, A. G., Jones, L. A., Murphy, K. C., Sanders, R. D., Asherson, P., Owen, M. J., et al. (1999). Dimensions of psychosis in affected sibling pairs. Schizophrenia Bulletin, 25(4), 841–850.

    PubMed  Google Scholar 

  • Cardno, A. G., Marshall, E. J., Coid, B., Macdonald, A. M., Ribchester, T. R., Davies, N. J., et al. (1999). Heritability estimates for psychotic disorders: The Maudsley twin psychosis series. Archives of General Psychiatry, 56(2), 162–168.

    PubMed  Google Scholar 

  • Cardno, A. G., Rijsdijk, F. V., Sham, P. C., Murray, R. M., & McGuffin, P. (2002). A twin study of genetic relationships between psychotic symptoms. American Journal of Psychiatry, 159(4), 539–545.

    PubMed  Google Scholar 

  • Cardno, A. G., Rijsdijk, F. V., West, R. M., Gottesman, I. I., Craddock, N., Murray, R. M., et al. (2012). A twin study of schizoaffective mania, schizoaffective depression, and other psychotic syndromes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 159B, 172–182.

    PubMed Central  Google Scholar 

  • Chaddock, C. A., Barker, G. J., Marshall, N., Schulze, K., Hall, M. H., Fern, A., et al. (2009). White matter microstructural impairments and genetic liability to familial bipolar I disorder. The British Journal of Psychiatry, 194(6), 527–534.

    PubMed  Google Scholar 

  • Cheniaux, E., Landeira-Fernandez, J., Lessa Telles, L., Lessa, J. L. M., Dias, A., Duncan, T., et al. (2008). Does schizoaffective disorder really exist? A systematic review of the studies that compared schizoaffective disorder with schizophrenia or mood disorders. Journal of Affective Disorders, 106(3), 209–217.

    PubMed  Google Scholar 

  • Chumakov, I., Blumenfeld, M., Guerassimenko, O., Cavarec, L., Palicio, M., Abderrahim, H., et al. (2002). Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proceedings of the National Academy of Sciences, 99(21), 13675–13680.

    Google Scholar 

  • Clapcote, S. J., Lipina, T. V., Millar, J. K., Mackie, S., Christie, S., Ogawa, F., et al. (2007). Behavioral phenotypes of Disc1 missense mutations in mice. Neuron, 54(3), 387–402.

    PubMed  Google Scholar 

  • Cohen, S. M., Allen, M. G., Pollin, W., & Hurbed, Z. (1972). Relationship of schizo- affective psychosis to manic depressive psychosis and schizophrenia: Findings in 15,909 veteran pairs. Archives of General Psychiatry, 26(6), 539–546.

    PubMed  Google Scholar 

  • Consortium, W. T. C. C. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447(7145), 661–678.

    Google Scholar 

  • Cooper, J. E., Kendell, R. E., Gurland, B. J., Sharpe, L., Copeland, J. R. M., & Simon, R. (1972). Psychiatric diagnosis in New York and London: A comparative study of mental hospital admissions. Maudsley Monograph 20. London: Oxford University Press.

    Google Scholar 

  • Craddock, N., Jones, L., Jones, I. R., Kirov, G., Green, E. K., Grozeva, D., et al. (2010). Strong genetic evidence for a selective influence of GABAA receptors on a component of the bipolar disorder phenotype. Molecular Psychiatry, 15(2), 146–153.

    PubMed  Google Scholar 

  • Craddock, N., Khodel, V., Van Eerdewegh, P., & Reich, T. (1995). Mathematical limits of multilocus models: The genetic transmission of bipolar disorder. American Journal of Human Genetics, 57(3), 690–702.

    PubMed Central  PubMed  Google Scholar 

  • Craddock, N., O’donovan, M. C., & Owen, M. J. (2005). The genetics of schizophrenia and bipolar disorder: Dissecting psychosis. Journal of Medical Genetics, 42(3), 193–204.

    PubMed  Google Scholar 

  • Craddock, N., O’Donovan, M. C., & Owen, M. J. (2009). Psychosis genetics: Modeling the relationship between schizophrenia, bipolar disorder, and mixed (or schizoaffective) psychoses. Schizophrenia Bulletin, 35(3), 482–490.

    PubMed  Google Scholar 

  • DeLisi, L. E., Goldin, L. R., Hamovit, J. R., Maxwell, M. E., Kurtz, D., & Gershon, E. S. (1986). A family study of the association of increased ventricular size with schizophrenia. Archives of General Psychiatry, 43(2), 148–153.

    PubMed  Google Scholar 

  • Dempster, E. L., Pidsley, R., Schalkwyk, L. C., Owens, S., Georgiades, A., Kane, F., et al. (2011). Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Human Molecular Genetics, 20(24), 4786–4796.

    PubMed  Google Scholar 

  • Doherty, J. L., O’Donovan, M. C., & Owen, M. J. (2012). Recent genomic advances in schizophrenia. Clinical Genetics, 81(2), 103–109.

    PubMed  Google Scholar 

  • Donohoe, G., Rose, E., Frodl, T., Morris, D., Spoletini, I., Adriano, F., et al. (2011). ZNF804A allele is associated with relatively intact gray matter volume in patients with schizophrenia. NeuroImage, 54(3), 2132–2137.

    PubMed  Google Scholar 

  • Eichler, E. E., Flint, J., Gibson, G., Kong, A., Leal, S. M., Moore, J. H., et al. (2010). Missing heritability and strategies for finding the underlying causes of complex disease. Nature Reviews Genetics, 11(6), 446–450.

    PubMed Central  PubMed  Google Scholar 

  • Esslinger, C., Walter, H., Kirsch, P., Erk, S., Schnell, K., Arnold, C., et al. (2009). Neural mechanisms of a genome-wide supported psychosis variant. Science, 324(5927), 605.

    PubMed  Google Scholar 

  • Fagnani, C., Bellani, M., Tansella, M., Balestrieri, M., Toccaceli, V., Patriarca, V., et al. (2011). Investigation of shared genetic effects for psychotic and obsessive symptoms in young adult twins. Psychiatry Research, 188(2), 276–282.

    PubMed  Google Scholar 

  • Falconer, D. S. (1965). The inheritance of liability to certain diseases, estimated from the incidence among relatives. Annals of Human Genetics, 29(1), 51–76.

    Google Scholar 

  • Fanous, A. H., Neale, M. C., Webb, B. T., Straub, R. E., Amdur, R. L., O’Neill, F. A., et al. (2007). A genome-wide scan for modifier loci in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 144(5), 589–595.

    Google Scholar 

  • Fanous, A. H., van den Oord, E. J., Riley, B. P., Aggen, S. H., Neale, M. C., O’Neill, F. A., et al. (2005). Relationship between a high-risk haplotype in the DTNBP1 (dysbindin) gene and clinical features of schizophrenia. American Journal of Psychiatry, 162(10), 1824–1832.

    PubMed  Google Scholar 

  • Faraone, S. V., Glatt, S. J., Su, J., & Tsuang, M. T. (2004). Three potential susceptibility loci shown by a genome-wide scan for regions influencing the age at onset of mania. American Journal of Psychiatry, 161(4), 625–630.

    PubMed  Google Scholar 

  • Farmer, A., Elkin, A., & McGuffin, P. (2007). The genetics of bipolar affective disorder. Current Opinion in Psychiatry, 20(1), 8–12.

    PubMed  Google Scholar 

  • Ferreira, M. A. R., O’Donovan, M. C., Meng, Y. A., Jones, I. R., Ruderfer, D. M., Jones, L., et al. (2008). Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nature Genetics, 40(9), 1056–1058.

    PubMed Central  PubMed  Google Scholar 

  • Fischer, M. (1973). Genetic and environmental factors in schizophrenia: A study of schizophrenic twins and their families. Acta Psychiatrica Scandinavica, Suppl 238, 9–142.

    Google Scholar 

  • Gejman, P. V., Sanders, A. R., & Kendler, K. S. (2011). Genetics of schizophrenia: New findings and challenges. Annual Review of Genomics and Human Genetics, 12, 121–144.

    PubMed  Google Scholar 

  • Gershon, E. S., Alliey-Rodriguez, N., & Liu, C. (2011). After GWAS: Searching for genetic risk for schizophrenia and bipolar disorder. American Journal of Psychiatry, 168(3), 253–256.

    PubMed  Google Scholar 

  • Gershon, E. S., DeLisi, L. E., Hamovit, J., Nurnberger, J. I., Jr., Maxwell, M. E., Schreiber, J., et al. (1988). A controlled family study of chronic psychoses: Schizophrenia and schizoaffective disorder. Archives of General Psychiatry, 45(4), 328–336.

    PubMed  Google Scholar 

  • Gershon, E. S., Hamovit, J., Guroff, J. J., Dibble, E., Leckman, J. F., Sceery, W., et al. (1982). A family study of schizoaffective, bipolar I, bipolar II, unipolar, and normal control probands. Archives of General Psychiatry, 39(10), 1157–1167.

    PubMed  Google Scholar 

  • Gershon, E. S., Mark, A., Cohen, N., Belizon, N., Baron, M., & Knobe, K. E. (1975). Transmitted factors in the morbid risk of affective disorders: A controlled study. Journal of Psychiatric Research, 12(4), 283–299.

    Google Scholar 

  • Girard, S. L., Gauthier, J., Noreau, A., Xiong, L., Zhou, S., Jouan, L., et al. (2011). Increased exonic de novo mutation rate in individuals with schizophrenia. Nature Genetics, 43(9), 860–863.

    PubMed  Google Scholar 

  • Goes, F., Zandi, P., Miao, K., McMahon, F., Steele, J., Willour, V., et al. (2007). Mood-incongruent psychotic features in bipolar disorder: Familial aggregation and suggestive linkage to 2p11-q14 and 13q21-33. American Journal of Psychiatry, 164(2), 236–247.

    PubMed  Google Scholar 

  • Goldin, L. R., Gershon, E. S., Targum, S. D., Sparkes, R. S., & McGinniss, M. (1983). Segregation and linkage analyses in families of patients with bipolar, unipolar, and schizoaffective mood disorders. American Journal of Human Genetics, 35(2), 274–287.

    PubMed Central  PubMed  Google Scholar 

  • Goodwin, F. K., & Jamison, K. R. (2007). Manic-depressive illness: Bipolar disorders and recurrent depression (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Gottesman, I. I. (1991). Schizophrenia genesis: The origins of madness. New York: WH Freeman.

    Google Scholar 

  • Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160(4), 636–645.

    PubMed  Google Scholar 

  • Gottesman, I. I., Laursen, T. M., Bertelsen, A., & Mortensen, P. B. (2010). Severe mental disorders in offspring with 2 psychiatrically ill parents. Archives of General Psychiatry, 67(3), 252–257.

    PubMed  Google Scholar 

  • Gottesman, I. I., & Shields, J. (1982). Schizophrenia: The epigenetic puzzle. Cambridge: Cambridge University Press.

    Google Scholar 

  • Green, E. K., Raybould, R., Macgregor, S., Gordon-Smith, K., Heron, J., Hyde, S., et al. (2005). Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder. Archives of General Psychiatry, 62(6), 642–648.

    PubMed  Google Scholar 

  • Greenwood, T. A., Lazzeroni, L. C., Murray, S. S., Cadenhead, K. S., Calkins, M. E., Dobie, D. J., et al. (2011). Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. American Journal of Psychiatry, 168(9), 930–946.

    PubMed Central  PubMed  Google Scholar 

  • Grozeva, D., Kirov, G., Ivanov, D., Jones, I. R., Jones, L., Green, E. K., et al. (2010). Rare copy number variants: A point of rarity in genetic risk for bipolar disorder and schizophrenia. Archives of General Psychiatry, 67(4), 318–327.

    PubMed  Google Scholar 

  • Gur, R. E., Calkins, M. E., Gur, R. C., Horan, W. P., Nuechterlein, K. H., Seidman, L. J., et al. (2007). The consortium on the genetics of schizophrenia: Neurocognitive endophenotypes. Schizophrenia Bulletin, 33(1), 49–68.

    PubMed  Google Scholar 

  • Hall, M. H., & Rijsdijk, F. (2008). Validating endophenotypes for schizophrenia using statistical modeling of twin data. Clinical EEG and Neuroscience, 39(2), 78–81.

    PubMed  Google Scholar 

  • Hamshere, M. L., Bennett, P., Williams, N., Segurado, R., Cardno, A., Norton, N., et al. (2005). Genomewide linkage scan in schizoaffective disorder: Significant evidence for linkage at 1q42 close to DISC1, and suggestive evidence at 22q11 and 19p13. Archives of General Psychiatry, 62(10), 1081–1088.

    PubMed  Google Scholar 

  • Hamshere, M. L., Green, E. K., Jones, I. R., Jones, L., Moskvina, V., Kirov, G., et al. (2009). Genetic utility of broadly defined bipolar schizoaffective disorder as a diagnostic concept. The British Journal of Psychiatry, 195(1), 23–29.

    PubMed Central  PubMed  Google Scholar 

  • Hamshere, M. L., Holmans, P. A., McCarthy, G. M., Jones, L. A., Murphy, K. C., Sanders, R. D., et al. (2011). Phenotype evaluation and genomewide linkage study of clinical variables in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 156(8), 929–940.

    Google Scholar 

  • Hare, E., Glahn, D. C., Dassori, A., Raventos, H., Nicolini, H., Ontiveros, A., et al. (2009). Heritability of age of onset of psychosis in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153(1), 298–302.

    Google Scholar 

  • Hattori, E., Liu, C., Badner, J. A., Bonner, T. I., Christian, S. L., Maheshwari, M., et al. (2003). Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. American Journal of Human Genetics, 72(5), 1131–1140.

    PubMed Central  PubMed  Google Scholar 

  • Heston, L. L. (1966). Psychiatric disorders in foster home reared children of schizophrenic mothers. The British Journal of Psychiatry, 112(489), 819–825.

    PubMed  Google Scholar 

  • Hodgkinson, C. A., Goldman, D., Jaeger, J., Persaud, S., Kane, J. M., Lipsky, R. H., et al. (2004). Disrupted in schizophrenia 1 (DISC1): Association with schizophrenia, schizoaffective disorder, and bipolar disorder. American Journal of Human Genetics, 75(5), 862–872.

    PubMed Central  PubMed  Google Scholar 

  • Jones, I., & Craddock, N. (2001). Familiality of the puerperal trigger in bipolar disorder: Results of a family study. American Journal of Psychiatry, 158(6), 913–917.

    PubMed  Google Scholar 

  • Kendell, R. E. (1988). Other functional psychoses. In R. E. Kendell & A. K. Zealley (Eds.), Companion to psychiatric studies. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Kendler, K. S., & Diehl, S. R. (1993). The genetics of schizophrenia: A current, genetic-epidemiologic perspective. Schizophrenia Bulletin, 19(2), 261–285.

    PubMed  Google Scholar 

  • Kendler, K. S., Gruenberg, A. M., & Kinney, D. K. (1994). Independent diagnoses of adoptees and relatives as defined by DSM-III in the provincial and national samples of the Danish Adoption Study of Schizophrenia. Archives of General Psychiatry, 51(6), 456–468.

    PubMed  Google Scholar 

  • Kendler, K. S., Gruenberg, A. M., & Tsuang, M. T. (1986). A DSM-III family study of the nonschizophrenic psychotic disorders. American Journal of Psychiatry, 143(9), 1098–1105.

    PubMed  Google Scholar 

  • Kendler, K. S., Karkowski-Shuman, L., Anthony O’Neill, F., Straub, R. E., MacLean, C. J., & Walsh, D. (1997). Resemblance of psychotic symptoms and syndromes in affected sibling pairs from the irish study of high-density schizophrenia families: Evidence for possible etiologic heterogeneity. American Journal of Psychiatry, 154(2), 191–198.

    PubMed  Google Scholar 

  • Kendler, K. S., McGuire, M., Gruenberg, A. M., O’Hare, A., Spellman, M., & Walsh, D. (1993a). The Roscommon family study: I. Methods, diagnosis of probands, and risk of schizophrenia in relatives. Archives of General Psychiatry, 50(7), 527–540.

    PubMed  Google Scholar 

  • Kendler, K. S., McGuire, M., Gruenberg, A. M., O’Hare, A., Spellman, M., & Walsh, D. (1993b). The roscommon family study: III. Schizophrenia-related personality disorders in relatives. Archives of General Psychiatry, 50(10), 781–788.

    PubMed  Google Scholar 

  • Kendler, K. S., McGuire, M., Gruenberg, A. M., O’Hare, A., Spellman, M., & Walsh, D. (1993c). The Roscommon Family Study: IV. Affective illness, anxiety disorders, and alcoholism in relatives. Archives of General Psychiatry, 50(12), 952–960.

    PubMed  Google Scholar 

  • Kendler, K. S., McGuire, M., Gruenberg, A. M., Spellman, M., O’Hare, A., & Walsh, D. (1993). The Roscommon family study: II. The risk of nonschizophrenic nonaffective psychoses in relatives. Archives of General Psychiatry, 50(8), 645–652.

    PubMed  Google Scholar 

  • Kendler, K. S., McGuire, M., Gruenberg, A. M., & Walsh, D. (1995). Examining the validity of DSM-III-R schizoaffective disorder and its putative subtypes in the Roscommon Family Study. American Journal of Psychiatry, 152(5), 755–764.

    PubMed  Google Scholar 

  • Kendler, K. S., Neale, M. C., & Walsh, D. (1995). Evaluating the spectrum concept of schizophrenia in the Roscommon Family Study. American Journal of Psychiatry, 152(5), 749–754.

    PubMed  Google Scholar 

  • Kendler, K. S., Pedersen, N. L., Farahmand, B. Y., & Persson, P. G. (1996). The treated incidence of psychotic and affective illness in twins compared with population expectation: A study in the Swedish Twin and Psychiatric Registries. Psychological Medicine, 26(6), 1135–1144.

    PubMed  Google Scholar 

  • Kendler, K. S., Pedersen, N., Johnson, L., Neale, M. C., & Mathe, A. A. (1993). A pilot Swedish twin study of affective illness, including hospital- and population- ascertained subsamples. Archives of General Psychiatry, 50(9), 699–706.

    PubMed  Google Scholar 

  • Kendler, K. S., Pedersen, N. L., Neale, M. C., & Mathe, A. A. (1995). A pilot Swedish twin study of affective illness including hospital- and population-ascertained subsamples: Results of model fitting. Behavior Genetics, 25(3), 217–232.

    PubMed  Google Scholar 

  • Kendler, K. S., & Robinette, C. D. (1983). Schizophrenia in the National Academy of Sciences-National Research Council Twin Registry: A 16-year update. American Journal of Psychiatry, 140(12), 1551–1563.

    PubMed  Google Scholar 

  • Kendler, K. S., Tsuang, M. T., & Hays, P. (1987). Age at onset in schizophrenia. A familial perspective. Archives of General Psychiatry, 44(10), 881–890.

    PubMed  Google Scholar 

  • Kety, S. S., Wender, P. H., Jacobsen, B., Ingraham, L. J., Jansson, L., Faber, B., et al. (1994). Mental illness in the biological and adoptive relatives of schizophrenic adoptees: Replication of the Copenhagen study in the rest of Denmark. Archives of General Psychiatry, 51(6), 442–455.

    PubMed  Google Scholar 

  • Kieseppä, T., Partonen, T., Haukka, J., Kaprio, J., & Lannqvist, J. (2004). High concordance of bipolar I disorder in a nationwide sample of twins. American Journal of Psychiatry, 161(10), 1814–1821.

    PubMed  Google Scholar 

  • Kläning, U. (1999). Greater occurrence of schizophrenia in dizygotic but not monozygotic twins. Register-based study. British Journal of Psychiatry, 175, 407–409.

    PubMed  Google Scholar 

  • Kläning, U., Laursen, T. M., Licht, R. W., Kyvik, K. O., Skytthe, A., & Mortensen, P. B. (2004). Is the risk of bipolar disorder in twins equal to the risk in singletons? A nationwide register-based study. Journal of Affective Disorders, 81(2), 141–145.

    PubMed  Google Scholar 

  • Kläning, U., Mortensen, P. B., & Kyvik, K. O. (1996). Increased occurrence of schizophrenia and other psychiatric illnesses among twins. British Journal of Psychiatry, 168, 688–692.

    PubMed  Google Scholar 

  • Kleinhaus, K., Harlap, S., Perrin, M. C., Manor, O., Calderon-Margalit, R., Friedlander, Y., et al. (2008). Twin pregnancy and the risk of schizophrenia. Schizophrenia Research, 105(1–3), 197–200.

    PubMed Central  PubMed  Google Scholar 

  • Kringlen, E. (1967a). Heredity and environment in the functional psychoses: An epidemiological-clinical twin study. London: William Heinemann.

    Google Scholar 

  • Kringlen, E. (1967b). Heredity and environment in the functional psychoses: Case histories. Oslo: Universitetsforlaget.

    Google Scholar 

  • Laursen, T. M., Labouriau, R., Licht, R. W., Bertelsen, A., Munk-Olsen, T., & Mortensen, P. B. (2005). Family history of psychiatric illness as a risk factor for schizoaffective disorder: A Danish register-based cohort study. Archives of General Psychiatry, 62(8), 841–848.

    PubMed  Google Scholar 

  • Lee, S. H., Decandia, T. R., Ripke, S., Yang, J., Sullivan, P. F., Goddard, M. E., et al. (2012). Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nature Genetics, 44(3), 247–250.

    PubMed Central  PubMed  Google Scholar 

  • Lichtenstein, P., Yip, B. H., Bjork, C., Pawitan, Y., Cannon, T. D., Sullivan, P. F., et al. (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study. The Lancet, 373(9659), 234–239.

    Google Scholar 

  • Liddle, P. F. (1987). The symptoms of chronic schizophrenia. A re-examination of the positive-negative dichotomy. The British Journal of Psychiatry, 151, 145–151.

    PubMed  Google Scholar 

  • Lin, C. C. H., Su, C. H., Kuo, P. H., Hsiao, C. K., Soong, W. T., & Chen, W. J. (2007). Genetic and environmental influences on schizotypy among adolescents in Taiwan: A multivariate twin/sibling analysis. Behavior Genetics, 37(2), 334–344.

    PubMed  Google Scholar 

  • Linney, Y. M., Murray, R. M., Peters, E. R., MacDonald, A. M., Rijsdijk, F., & Sham, P. C. (2003). A quantitative genetic analysis of schizotypal personality traits. Psychological Medicine, 33(5), 803–816.

    PubMed  Google Scholar 

  • Loftus, J., DeLisi, L. E., & Crow, T. J. (1998). Familial associations of subsyndromes of psychosis in affected sibling pairs with schizophrenia and schizoaffective disorder. Psychiatry Research, 80(2), 101–111.

    PubMed  Google Scholar 

  • Loftus, J., Delisi, L. E., & Crow, T. J. (2000). Factor structure and familiality of first- rank symptoms in sibling pairs with schizophrenia and schizoaffective disorder. British Journal of Psychiatry, 177, 15–19.

    PubMed  Google Scholar 

  • Maier, W., Lichtermann, D., Minges, J., Hallmayer, J., Heun, R., Benkert, O., et al. (1993). Continuity and discontinuity of affective disorders and schizophrenia: Results of a controlled family study. Archives of General Psychiatry, 50(11), 871–883.

    PubMed  Google Scholar 

  • Maj, M., Pirozzi, R., Formicola, A. M., Bartoli, L., & Bucci, P. (2000). Reliability and validity of the DSM-IV diagnostic category of schizoaffective disorder: Preliminary data. Journal of Affective Disorders, 57(1–3), 95–98.

    PubMed  Google Scholar 

  • Malhotra, D., McCarthy, S., Michaelson, J. J., Vacic, V., Burdick, K. E., Yoon, S., et al. (2011). High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron, 72(6), 951–963.

    PubMed  Google Scholar 

  • Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747–753.

    PubMed Central  PubMed  Google Scholar 

  • McGrath, J. A., Avramopoulos, D., Lasseter, V. K., Wolyniec, P. S., Fallin, M. D., Liang, K. Y., et al. (2009). Familiality of novel factorial dimensions of schizophrenia. Archives of General Psychiatry, 66(6), 591–600.

    PubMed  Google Scholar 

  • McGue, M., Gottesman, I. I., & Rao, D. C. (1985). Resolving genetic models for the transmission of schizophrenia. Genetic Epidemiology, 2(1), 99–110.

    PubMed  Google Scholar 

  • McGuffin, P., Farmer, A., & Harvey, I. (1991). A polydiagnostic application of operational criteria in studies of psychotic illness: Development and reliability of the OPCRIT system. Archives of General Psychiatry, 48(8), 764–770.

    PubMed  Google Scholar 

  • McGuffin, P., & Katz, R. (1989). The genetics of depression and manic-depressive disorder. The British Journal of Psychiatry, 155, 294–304.

    PubMed  Google Scholar 

  • McGuffin, P., Rijsdijk, F., Andrew, M., Sham, P., Katz, R., & Cardno, A. (2003). The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Archives of General Psychiatry, 60(5), 497–502.

    PubMed  Google Scholar 

  • McQueen, M. B., Devlin, B., Faraone, S. V., Nimgaonkar, V. L., Sklar, P., Smoller, J. W., et al. (2005). Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q. American Journal of Human Genetics, 77(4), 582–595.

    PubMed Central  PubMed  Google Scholar 

  • Mendlewicz, J., & Rainer, J. D. (1977). Adoption study supporting genetic transmission in manic depressive illness. Nature, 268(5618), 327–329.

    PubMed  Google Scholar 

  • Millar, J. K., Wilson-Annan, J. C., Anderson, S., Christie, S., Taylor, M. S., Semple, C. A. M., et al. (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Human Molecular Genetics, 9(9), 1415–1423.

    PubMed  Google Scholar 

  • Mortensen, P. B., Pedersen, C. B., Melbye, M., Mors, O., & Ewald, H. (2003). Individual and familial risk factors for bipolar affective disorders in Denmark. Archives of General Psychiatry, 60(12), 1209–1215.

    PubMed  Google Scholar 

  • Mortensen, P. B., Pedersen, M. G., & Pedersen, C. B. (2010). Psychiatric family history and schizophrenia risk in Denmark: Which mental disorders are relevant? Psychological Medicine, 40(2), 201–210.

    PubMed  Google Scholar 

  • Murphy, K. C., Jones, L. A., & Owen, M. J. (1999). High rates of schizophrenia in adults with velo-cardio-facial syndrome. Archives of General Psychiatry, 56(10), 940–945.

    PubMed  Google Scholar 

  • Murray, R. M., Sham, P., Van Os, J., Zanelli, J., Cannon, M., & McDonald, C. (2004). A developmental model for similarities and dissimilarities between schizophrenia and bipolar disorder. Schizophrenia Research, 71(2–3), 405–416.

    PubMed  Google Scholar 

  • Neale, M., & Cardon, L. R. (1992). Methodology for genetic studies of twins and families. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Neale, M. C., Eaves, L. J., Hewitt, J. K., MacLean, C. J., Meyer, J. M., & Kendler, K. S. (1989). Analyzing the relationship between age at onset and risk to relatives. American Journal of Human Genetics, 45(2), 226–239.

    PubMed Central  PubMed  Google Scholar 

  • Nestler, E. J., & Hyman, S. E. (2010). Animal models of neuropsychiatric disorders. Nature Neuroscience, 13(10), 1161–1169.

    PubMed Central  PubMed  Google Scholar 

  • Ng, M. Y. M., Levinson, D. F., Faraone, S. V., Suarez, B. K., Delisi, L. E., Arinami, T., et al. (2009). Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Molecular Psychiatry, 14(8), 774–785.

    PubMed Central  PubMed  Google Scholar 

  • O’Donovan, M. C., Craddock, N., Norton, N., Williams, H., Peirce, T., Moskvina, V., et al. (2008). Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 40(9), 1053–1055.

    PubMed  Google Scholar 

  • O’Mahony, E., Corvin, A., O’Connell, R., Comerford, C., Larsen, B., Jones, I. R., et al. (2002). Sibling pairs with affective disorders: Resemblance of demographic and clinical features. Psychological Medicine, 32(1), 55–61.

    PubMed  Google Scholar 

  • O’Rourke, D. H., Gottesman, I. I., & Suarez, B. K. (1982). Refutation of the general single-locus model for the etiology of schizophrenia. American Journal of Human Genetics, 34(4), 630–649.

    PubMed Central  PubMed  Google Scholar 

  • Owens, S. F., Picchioni, M. M., Rijsdijk, F. V., Stahl, D., Vassos, E., Rodger, A. K., et al. (2011). Genetic overlap between episodic memory deficits and schizophrenia: Results from the Maudsley Twin Study. Psychological Medicine, 41(3), 521–532.

    PubMed  Google Scholar 

  • Post, R. M., Luckenbaugh, D. A., Leverich, G. S., Altshuler, L. L., Frye, M. A., Suppes, T., et al. (2008). Incidence of childhood-onset bipolar illness in the USA and Europe. The British Journal of Psychiatry, 192(2), 150–151.

    PubMed  Google Scholar 

  • Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O’Donovan, M. C., Sullivan, P. F., et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460(7256), 748–752.

    PubMed  Google Scholar 

  • Rasetti, R., Sambataro, F., Chen, Q., Callicott, J. H., Mattay, V. S., & Weinberger, D. R. (2011). Altered cortical network dynamics: A potential intermediate phenotype for schizophrenia and association with ZNF804A. Archives of General Psychiatry, 68(12), 1207–1217.

    PubMed  Google Scholar 

  • Rees, E., Moskvina, V., Owen, M. J., O’Donovan, M. C., & Kirov, G. (2011). De novo rates and selection of schizophrenia-associated copy number variants. Biological Psychiatry, 70(12), 1109–1114.

    PubMed  Google Scholar 

  • Reich, T., Rice, J., Cloninger, C. R., Wette, R., & James, J. (1979). The use of multiple thresholds and segregation analysis in analyzing the phenotypic heterogeneity of multifactorial traits. Annals of Human Genetics, 42(3), 371–389.

    PubMed  Google Scholar 

  • Reveley, A. M., Reveley, M. A., & Murray, R. M. (1984). Cerebral ventricular enlargement in non-genetic schizophrenia: A controlled twin study. The British Journal of Psychiatry, 144(1), 89–93.

    PubMed  Google Scholar 

  • Rice, J., Reich, T., & Andreasen, N. C. (1987). The familial transmission of bipolar illness. Archives of General Psychiatry, 44(5), 441–450.

    PubMed  Google Scholar 

  • Rietkerk, T., Boks, M. P. M., Sommer, I. E., Liddle, P. F., Ophoff, R. A., & Kahn, R. S. (2008). The genetics of symptom dimensions of schizophrenia: Review and meta-analysis. Schizophrenia Research, 102(1–3), 197–205.

    PubMed  Google Scholar 

  • Rijsdijk, F. V., Gottesman, I. I., McGuffin, P., & Cardno, A. G. (2011). Heritability estimates for psychotic symptom dimensions in twins with psychotic disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 156(1), 89–98.

    Google Scholar 

  • Ripke, S., Sanders, A. R., Kendler, K. S., Levinson, D. F., Sklar, P., Holmans, P. A., et al. (2011). Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 43(10), 969–978.

    Google Scholar 

  • Risch, N. (1990). Linkage strategies for genetically complex traits. I. Multilocus models. American Journal of Human Genetics, 46(2), 222–228.

    PubMed Central  PubMed  Google Scholar 

  • Risch, N., & Baron, M. (1984). Segregation analysis of schizophrenia and related disorders. American Journal of Human Genetics, 36(5), 1039–1059.

    PubMed Central  PubMed  Google Scholar 

  • Rosenthal, D. (1960). Confusion of identity and the frequency of schizophrenia in twins. Archives of General Psychiatry, 3, 297–304.

    PubMed  Google Scholar 

  • Rosenthal, D., Wender, P. H., Kety, S. S., Welner, J., & Schulsinger, F. (1971). The adopted-away offspring of schizophrenics. American Journal of Psychiatry, 128(3), 307–311.

    PubMed  Google Scholar 

  • Schneider, K. (1959). Clinical psychopathology (Trans MW Hamilton). New York: Grune & Stratton.

    Google Scholar 

  • Schulze, T. G., Hedeker, D., Zandi, P., Rietschel, M., & McMahon, F. J. (2006). What is familial about familial bipolar disorder? Resemblance among relatives across a broad spectrum of phenotypic characteristics. Archives of General Psychiatry, 63(12), 1368–1376.

    PubMed  Google Scholar 

  • Schulze, K. K., Walshe, M., Stahl, D., Hall, M. H., Kravariti, E., Morris, R., et al. (2011). Executive functioning in familial bipolar I disorder patients and their unaffected relatives. Bipolar Disorders, 13(2), 208–216.

    PubMed  Google Scholar 

  • Schwartz, J. E., Fennig, S., Tanenberg-Karant, M., Carlson, G., Craig, T., Galambos, N., et al. (2000). Congruence of diagnoses 2 years after a first- admission diagnosis of psychosis. Archives of General Psychiatry, 57(6), 593–600.

    PubMed  Google Scholar 

  • Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., et al. (2004). Large-scale copy number polymorphism in the human genome. Science, 305(5683), 525–528.

    PubMed  Google Scholar 

  • Serretti, A., Macciardi, F., & Smeraldi, E. (1998). Dopamine receptor D2 Ser/Cys311 variant associated with disorganized symptomatology of schizophrenia. Schizophrenia Research, 34(3), 207–210.

    PubMed  Google Scholar 

  • Shi, J., Levinson, D. F., Duan, J., Sanders, A. R., Zheng, Y., Pe’er, I., et al. (2009). Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature, 460(7256), 753–757.

    PubMed Central  PubMed  Google Scholar 

  • Sklar, P., Ripke, S., Scott, L. J., Andreassen, O. A., Cichon, S., Craddock, N., et al. (2011). Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nature Genetics, 43(10), 977–985.

    PubMed Central  Google Scholar 

  • St Clair, D., Blackwood, D., Muir, W., Carothers, A., Walker, M., Spowart, G., et al. (1990). Association within a family of a balanced autosomal translocation with major mental illness. The Lancet, 336(8706), 13–16.

    Google Scholar 

  • Stankiewicz, P., & Lupski, J. R. (2010). Structural variation in the human genome and its role in disease. Annual Review of Medicine, 61, 437–455.

    PubMed  Google Scholar 

  • Stefansson, H., Ophoff, R. A., Steinberg, S., Andreassen, O. A., Cichon, S., Rujescu, D., et al. (2009). Common variants conferring risk of schizophrenia. Nature, 460(7256), 744–747.

    PubMed Central  PubMed  Google Scholar 

  • Stefansson, H., Sigurdsson, E., Steinthorsdottir, V., Bjornsdottir, S., Sigmundsson, T., Ghosh, S., et al. (2002). Neuregulin 1 and susceptibility to schizophrenia. American Journal of Human Genetics, 71(4), 877–892.

    PubMed Central  PubMed  Google Scholar 

  • Stone, J. L., O’Donovan, M. C., Gurling, H., Kirov, G. K., Blackwood, D. H. R., Corvin, A., et al. (2008). Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature, 455(7210), 237–241.

    Google Scholar 

  • Straub, R. E., Jiang, Y., MacLean, C. J., Ma, Y., Webb, B. T., Myakishev, M. V., et al. (2002). Genetic variation in the 6p22.3 Gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. American Journal of Human Genetics, 71(2), 337–348.

    PubMed Central  PubMed  Google Scholar 

  • Sullivan, P. F., Daly, M. J., & O’Donovan, M. (2012). Genetic architectures of psychiatric disorders: The emerging picture and its implications. Nature Reviews Genetics, 13, 537–551.

    PubMed  Google Scholar 

  • Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Archives of General Psychiatry, 60(12), 1187–1192.

    PubMed  Google Scholar 

  • Tandon, R., Keshavan, M. S., & Nasrallah, H. A. (2008). Schizophrenia, “Just the Facts” What we know in 2008. 2. Epidemiology and etiology. Schizophrenia Research, 102(1–3), 1–18.

    PubMed  Google Scholar 

  • Tienari, P. (1963). Psychiatric illnesses in identical twins. Acta Psychiatrica Scandinavica, 39(Suppl 171), 1–195.

    PubMed  Google Scholar 

  • Tienari, P., Wynne, L. C., Laksy, K., Moring, J., Nieminen, P., Sorri, A., et al. (2003). Genetic boundaries of the schizophrenia spectrum: Evidence from the Finnish adoptive family study of schizophrenia. American Journal of Psychiatry, 160(9), 1587–1594.

    PubMed  Google Scholar 

  • Tsuang, M. T., & Faraone, S. V. (1990). The genetics of mood disorders. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Tsuang, M. T., Winokur, G., & Crowe, R. R. (1980). Morbidity risks of schizophrenia and affective disorders among first degree relatives of patients with schizophrenia, mania, depression and surgical conditions. The British Journal of Psychiatry, 137(6), 497–504.

    PubMed  Google Scholar 

  • Ungvari, G. S., Caroff, S. N., & Gerevich, J. (2010). The catatonia conundrum: Evidence of psychomotor phenomena as a symptom dimension in psychotic disorders. Schizophrenia Bulletin, 36(2), 231–238.

    PubMed  Google Scholar 

  • Van Os, J., Linscott, R. J., Myin-Germeys, I., Delespaul, P., & Krabbendam, L. (2009). A systematic review and meta-analysis of the psychosis continuum: Evidence for a psychosis proneness-persistence-impairment model of psychotic disorder. Psychological Medicine, 39(2), 179–195.

    PubMed  Google Scholar 

  • Van Snellenberg, J. X., & De Candia, T. (2009). Meta-analytic evidence for familial coaggregation of schizophrenia and bipolar disorder. Archives of General Psychiatry, 66(7), 748–755.

    PubMed  Google Scholar 

  • Vassos, E., Sham, P. C., Cai, G., Deng, H., Liu, X., Sun, X., et al. (2008). Correlation and familial aggregation of dimensions of psychosis in affected sibling pairs from China. The British Journal of Psychiatry, 193(4), 305–310.

    PubMed  Google Scholar 

  • Vogler, G. P., Gottesman, I. I., McGue, M. K., & Rao, D. C. (1990). Mixed-model segregation analysis of schizophrenia in the Lindelius Swedish pedigrees. Behavior Genetics, 20(4), 461–472.

    PubMed  Google Scholar 

  • Walsh, T., McClellan, J. M., McCarthy, S. E., Addington, A. M., Pierce, S. B., Cooper, G. M., et al. (2008). Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science, 320(5875), 539–543.

    PubMed  Google Scholar 

  • Walters, J. T. R., Corvin, A., Owen, M. J., Williams, H., Dragovic, M., Quinn, E. M., et al. (2010). Psychosis susceptibility gene ZNF804A and cognitive performance in schizophrenia. Archives of General Psychiatry, 67(7), 692–700.

    PubMed  Google Scholar 

  • Wender, P. H., Kety, S. S., & Rosenthal, D. (1986). Psychiatric disorders in the biological and adoptive families of adopted individuals with affective disorders. Archives of General Psychiatry, 43(10), 923–929.

    PubMed  Google Scholar 

  • Wender, P. H., Rosenthal, D., Kety, S. S., Schulsinger, F., & Welner, J. (1974). Crossfostering. A research strategy for clarifying the role of genetic and experiential factors in the etiology of schizophrenia. Archives of General Psychiatry, 30(1), 121–128.

    PubMed  Google Scholar 

  • White, T., & Gottesman, I. (2012). Brain connectivity and gyrification as endophenotypes for schizophrenia: Weight of the evidence. Current Topics in Medicinal Chemistry, 12(21), 2393–2403.

    Google Scholar 

  • Wickham, H., Walsh, C., Asherson, P., Taylor, C., Sigmundson, T., Gill, M., et al. (2001). Familiality of symptom dimensions in schizophrenia. Schizophrenia Research, 47(2–3), 223–232.

    PubMed  Google Scholar 

  • Wilcox, M. A., Faraone, S. V., Su, J., Van Eerdewegh, P., & Tsuang, M. T. (2002). Genome scan of three quantitative traits in schizophrenia pedigrees. Biological Psychiatry, 52(9), 847–854.

    PubMed  Google Scholar 

  • Williams, H. J., Norton, N., Dwyer, S., Moskvina, V., Nikolov, I., Carroll, L., et al. (2011). Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Molecular Psychiatry, 16(4), 429–441.

    PubMed  Google Scholar 

  • Williams, N. M., Zaharieva, I., Martin, A., Langley, K., Mantripragada, K., Fossdal, R., et al. (2010). Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: A genome-wide analysis. The Lancet, 376(9750), 1401–1408.

    Google Scholar 

  • World Health Organization. (1992). The ICD-10 classification of mental and behavioural disorders: Clinical descriptions and diagnostic guidelines. Geneva: World Health Organization.

    Google Scholar 

  • Wray, N. R., Goddard, M. E., & Visscher, P. M. (2007). Prediction of individual genetic risk to disease from genome-wide association studies. Genome Research, 17(10), 1520–1528.

    PubMed  Google Scholar 

  • Wray, N. R., & Gottesman, I. I. (2012). Using summary data from the danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Frontiers in Genetics, 3, 118.

    PubMed Central  PubMed  Google Scholar 

  • Xu, B., Roos, J. L., Dexheimer, P., Boone, B., Plummer, B., Levy, S., et al. (2011). Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nature Genetics, 43(9), 864–868.

    PubMed Central  PubMed  Google Scholar 

  • Zhang, D., Cheng, L., Qian, Y., Alliey-Rodriguez, N., Kelsoe, J. R., Greenwood, T., et al. (2009). Singleton deletions throughout the genome increase risk of bipolar disorder. Molecular Psychiatry, 14(4), 376–380.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair G. Cardno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cardno, A.G., Pepper, E. (2014). Schizophrenia and Bipolar Disorder. In: Rhee, S., Ronald, A. (eds) Behavior Genetics of Psychopathology. Advances in Behavior Genetics, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9509-3_6

Download citation

Publish with us

Policies and ethics