Skip to main content

Creep

  • Chapter
  • First Online:
Metal Matrix Composites

Abstract

The creep behavior of MMCs is of great significance, since in many structural and nonstructural applications, these materials will be subjected to constant stress (or strain) for long periods of time, at temperature above half of the homologous temperature (homologous temperature is the temperature of interest divided by melting point, both in K; i.e., T/Tm). Most materials exhibit three distinct stages of creep: (1) primary creep, (2) secondary or steady-state creep, and (3) tertiary creep. In primary creep, the strains are relatively small. In the secondary or steady-state regime, a linear relationship exists between the strain and time (constant strain rate). This is believed to be a result of the combination of hardening and recovery mechanisms during creep. Finally, in the tertiary regime, the material undergoes cavitation and void growth, which is manifested in terms of a very rapid increase in strain with time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, M.M.I., and T.G. Langdon (1977) Metall. Trans., 8, 1832.

    Article  Google Scholar 

  • Arzt, E., and D.S. Wilkinson, (1986) Acta Metall Mater., 34, 1893–1898.

    Article  CAS  Google Scholar 

  • Atkins, S.L., and J.C. Gibeling, (1995) Metall. Mater. Trans., 26A, 3067–3079.

    Article  CAS  Google Scholar 

  • Bao, G., J.W. Hutchinson, and R.M. McMeeking, (1991) Acta Metall. Mater., 39, 1871–1882.

    Article  Google Scholar 

  • Biner, S.B., (1996) Acta Mater., 44, 1813–1829.

    Article  CAS  Google Scholar 

  • Bullock, E., M. McLean, and D.E. Miles, (1977) Acta Metall., 25, 333–344.

    Article  CAS  Google Scholar 

  • Davies, P.W., G. Nelmes, K.R. Williams, and B. Wilshire, (1973) Metal Sci. J., 7, 87–92.

    Article  CAS  Google Scholar 

  • Davis, L.C., and J.E. Allison, (1995) Metall. Mater. Trans., 26A, 3081–3089.

    Article  CAS  Google Scholar 

  • Dlouhy, A., N. Merk, and G. Eggeler, (1993) Acta Metall. Mater., 41, 3245–3256.

    Article  CAS  Google Scholar 

  • Dlouhy, A., G. Eggeler, and N. Merk, (1995) Acta Metall. Mater., 43, 535–550.

    Article  CAS  Google Scholar 

  • Dragone, T.L., and W. D. Nix, (1990) Acta Metall. Mater., 38, 1941.

    Article  Google Scholar 

  • Dragone, T.L., and W. D. Nix, (1992) Acta Metall. Mater., 40, 2781.

    Article  CAS  Google Scholar 

  • Dunand, D.C., and B. Derby, (1993) in Fundamentals of Metal Matrix Composites, (S. Suresh, A. Mortensen, and A. Needleman, eds.), Butterworth-Heinneman, Boston, pp. 191–214.

    Google Scholar 

  • Evans, R.W., and B. Wilshire, (1993) Introduction to Creep, The Institute of Materials, London.

    Google Scholar 

  • Goto, S., and M. McLean, (1989) Scripta Mater., 23, 2073–2078.

    CAS  Google Scholar 

  • Goto, S., and M. McLean, (1991) Acta Metall. Mater., 39, 153–164.

    Article  CAS  Google Scholar 

  • Kerr, M., and N. Chawla, (2004) Acta Mater., 52, 4527–4535.

    Article  CAS  Google Scholar 

  • Krajewski, P.E., J.E. Allison, and J.W. Jones, (1993) Metall. Trans., 24A, 2731–2741.

    CAS  Google Scholar 

  • Krajewski, P.E., J.E. Allison, and J.W. Jones, (1995) Metall. Mater. Trans., 26A, 3107–3118.

    Article  CAS  Google Scholar 

  • Kurumlu, D., E.J. Payton, M.L. Young, M. Schöbel, G. Requena, G. Eggeler, (2012) Acta Materialia, 60, 67–78.

    Article  CAS  Google Scholar 

  • Lee, S., S.M. Jeng, and J.-M. Yang, (1995) Mech. Mater., 21, 303–312.

    Article  Google Scholar 

  • Lewandowski, J.J., and P. Lowhaphandu, (1998) Int. Mater. Rev., 43, 145–187.

    Article  CAS  Google Scholar 

  • Leyens, C., J. Hausmann, and J. Kumpfert, (2003) Adv. Eng. Mater., 5, 399–410.

    Article  CAS  Google Scholar 

  • Li, Y., and T.G. Langdon, (1998a) Acta Mater., 46, 1143–1155.

    Article  CAS  Google Scholar 

  • Li, Y., and T.G. Langdon, (1998b) Mater. Sci. Eng., A245,1–9.

    CAS  Google Scholar 

  • Li, Y., and T.G. Langdon, (1998c) Acta Mater., 46, 3937–3948.

    Article  CAS  Google Scholar 

  • Lilholt, H., (1985) Comp. Sci. Tech., 22, 277–294.

    Article  CAS  Google Scholar 

  • Lilholt, H., (1991) Mater. Sci. Eng., A135, 161-171.

    CAS  Google Scholar 

  • Mabuchi, M., and K. Higashi, (1999) Acta Mater., 47, 1915–1922.

    Article  CAS  Google Scholar 

  • Mahoney, M., and A.K. Ghosh, (1987) Metall. Trans., 18A, 653–661.

    CAS  Google Scholar 

  • Meyers, M.A., and K.K. Chawla, (2009) Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, Cambridge, UK, pp. 653–705.

    Google Scholar 

  • Mishra, R.S., T.R. Bieler, and A.K. Mukherjee, (1997) Acta Mater., 45, 561–568.

    Article  CAS  Google Scholar 

  • Mohamed, F.A., M.M.I. Ahmed, and T.G. Langdon, (1977) Metall. Trans., 8, 933.

    Article  Google Scholar 

  • Mukherjee, A.K., J.E. Bird, and J.E. Dorn, (1964) Trans. ASM, 62, 155.

    Google Scholar 

  • Nardone, V.C., and J.R. Strife, (1987) Metall. Trans., 18A, 109–114.

    CAS  Google Scholar 

  • Nardone, V.C., and J.K. Tien, (1986) Scripta Mater., 20, 797–802.

    Google Scholar 

  • Nieh, T.G., (1984) Metall. Trans., 15A, 139–146.

    CAS  Google Scholar 

  • Nieh, T.G., C.A. Henshall, and J. Wadsworth, (1984) Scripta Metall., 18, 1405–1408.

    Article  CAS  Google Scholar 

  • Ohno, N., K. Toyoda, N. Okamoto, T. Miyake, and S. Nishide, (1994) Trans. ASME, 116, 208–214.

    CAS  Google Scholar 

  • Pandey, A.B., R.S. Mishra, and Y.R. Mahajan, (1992) Acta Metall. Mater., 40, 2045–2052.

    Article  CAS  Google Scholar 

  • Park, K.-T., E.J. Lavernia, and F.A. Mohamed, (1990) Acta Metall. Mater., 38, 2149–2159.

    Article  CAS  Google Scholar 

  • Parker, J.D., and B. Wilshire, (1975) Metal Sci. J., 9, 248–252.

    Article  CAS  Google Scholar 

  • Sherby, O.D., R.H. Klundt, and A.K. Miller, (1977) Metall. Trans., 8A, 843–850.

    CAS  Google Scholar 

  • Sørensen, N, A. Needleman, and V. Tvergaard, (1992) Mater. Sci. Eng., A158, 129–137.

    Google Scholar 

  • Taya, M., and H. Lilholt, (1986) in Advances in Composite Materials and Structures (S.S. Wang and Y.D.S. Rajapakse, eds.), ASME, New York, 21–27.

    Google Scholar 

  • Vasudevan, A.K., O Richmond, F. Zok, and J.D. Embury, (1989) Mater. Sci. Eng., A107, 63–69.

    CAS  Google Scholar 

  • Webster, D., (1982) Metall. Mater. Trans., 13A, 1511–1519.

    Google Scholar 

  • Whitehouse, A.F., H.M.A. Winand, and T.W. Clyne, (1998) Mater. Sci. Eng., A242, 57–69.

    CAS  Google Scholar 

  • Wu, M.Y., and O.D. Sherby, (1984) Scripta Metall., 18, 773–776.

    Article  CAS  Google Scholar 

  • Yavari, P., F.A. Mohamed, and T.G. Langdon, (1981) Acta Metall., 29, 1495.

    Article  CAS  Google Scholar 

  • Zong, B.Y., and B. Derby, (1997) Acta Mater., 45, 41–49.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chawla, N., Chawla, K.K. (2013). Creep. In: Metal Matrix Composites. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9548-2_9

Download citation

Publish with us

Policies and ethics