Skip to main content

Spatial Size Limits in Stereoscopic Vision

  • Chapter
Visual Attention Mechanisms

Abstract

Visual perception is probably a simultaneous local and global process. Local signals define the global picture, and the global percept defines which local features are the signal and which ones are noise. This mode of operation pertains to many aspects of vision, and particularly to stereoscopic vision. The global 3D percept derived from a random dot stereogram (RDS) display is assebmbled from local patches. In this article, we claim that the local patches on which stereoscopic visual perception depend, could in fact be identified as the hypercolumns of the visual cortex.

Stereoscopic vision is extremely precise in detecting minute differences between adjacent depth planes, but quite imprecise in estimating absolute depth. In this paper, we address the issue of the spatial acuity (and not the stereo acuity) of stereopsis. Static RDS (random dot stereograms) stimuli were used to find the spatial grain in which human stereoscopic vision operates. Using psychophysical experiments it was found that foveally, stimuli smaller than 8’ cannot be accurately perceived. For other eccentricities, it was found that this threshold is inversely proportional to the Cortical Magnification factor. We interpret this spatial size limit, which is an order of magnitude larger than visual spatial acuity, as an indication that stereopsis is an area based comparison rather than a point process, and discuss the relations between the cortical “patch” size that corresponds to this 8’ limit and Ocular Dominance Columns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Arditi. Binocular vision. In K. R. Boff, L. Kaufman, and J. P. Thomas, editors, Handbook of perception and performance: Vol. 1. Sensory processes and perception, pages 23.1–23.41. Wiley, New York, 1986.

    Google Scholar 

  2. R. Blake and H. R. Wilson. Neural models of stereoscopic vision. Trends in Neuroscience, 14:445–452, 1991.

    Article  Google Scholar 

  3. P. Burt and B. Julesz. A disparity gradient limit for binocular fusion. Science, 208:615–617, 1980.

    Google Scholar 

  4. L. K. Cormack, S. B. Stevenson, and C. M. Schor. Interocular correlation, luminance contrast and cyclopean processing. Vision Research, 31:2195–2207, 1991.

    Article  Google Scholar 

  5. A. Cowey and E. T. Rolls. Human cortical magnification factor and its relation to visual acuity. Exp. Brain Res., 3:447–454, 1974.

    Google Scholar 

  6. P. M. Daniel and D. Whitteridge. The representation of the visual field on the calcarine cortex in baboons and monkeys. J. Physiol., 148:33–34P, 1959.

    Google Scholar 

  7. P. M. Daniel and D. Whitteridge. The representation of the visual field on the cerebral cortex in monkeys. J. Physiol, 159:203 221, 1961.

    Google Scholar 

  8. N. Drasdo. The neural representation of visual space. Nature, 256:554–556, 1977.

    Article  Google Scholar 

  9. J. P. Frisby and J. E. W. Mayhew. Contrast sensitivity function for stereopsis. Perception, 7:423–429, 1978.

    Article  Google Scholar 

  10. D. L. Halpern and R. Blake. How contrast affects stereoacuity. Perception, 17:483–495, 1988.

    Article  Google Scholar 

  11. Y. Hermush and Y. Yeshurun. Spatial gradient limit on perception of multiple motion. Perception, 24:1247–1256, 1995.

    Article  Google Scholar 

  12. J. C. Horton, L. R. Dagi, E. P. McCrane, and F. M. de Monasterio. Arrangement of ocular dominance columns in human visual-cortex. Archives of Ophthalmology, 108:1025–1031, 1990.

    Article  Google Scholar 

  13. B. Julesz. Binocular depth perception of computer- generated patterns. Bell syst. Tech. J., 39:1125 1162, 1960.

    Google Scholar 

  14. L.L. Kontsevich and C.W. Tyler. Analysis of stereothresholds for stimuli below 2.5 c/deg. Vision Research, 34:2317–2329, 1994.

    Article  Google Scholar 

  15. G. E. Legge and Y. Gu. Stereopsis and contrast. Vision Research, 29:989–1004, 1989.

    Article  Google Scholar 

  16. M. S. Livingstone, S. Nori, D. C. Freeman, and D. H. Hubel. Stereopsis and binocularity in the squirrel monkey. Vision Research, 35:345–354, 1995.

    Article  Google Scholar 

  17. K. O. Ludwig, H. Neumann, and B. Neumann. Local stereoscopic depth estimation. Image and vision computing, 12:16–35, 1994.

    Article  Google Scholar 

  18. S. P. McKee, J. M. Harris, and H. S. Smallman. Minimum size for human disparity correlation. In Invest. Opht. Vis. Science, volume 36, 1715–663, 1995.

    Google Scholar 

  19. S. P. McKee, D. M. Levi, and S. F. Bowne. The imprecision of stereopsis. Vision Research, 30:1763–1779, 1990.

    Article  Google Scholar 

  20. R. Oehler. Spatial interactions in the rhesus monkey retina: a behavioural study using the westheimer paradigm. Exp. Brain Res., 59:217–225, 1985.

    Article  Google Scholar 

  21. K. N. Ogle. Researches in Binocular Vision. Saunders, Philadelphia, 1950.

    Google Scholar 

  22. K. N. Ogle. Disparity limits of stereopsis. Archives of Ophthalmology, 48:50–60, 1952.

    Article  Google Scholar 

  23. L. A. Olzak and J. P. Thomas. Seeing spatial patterns. In K. R. Boff, L. Kaufman, and J. P. Thomas, editors, Handbook of perception and performance: Vol. 1. Sensory processes and perception, pages 7.1-7.56. Wiley, New York, 1986.

    Google Scholar 

  24. A. J. Parker and M. J. Hawken. Two-dimensional spatial structure of receptive fields in monkey striate cortex. Journal of the Optical Society of America A, 5:598–605, 1988.

    Article  Google Scholar 

  25. J. Rovamo and V. Virsu. An estimation and application of the human cortical magnification factor. Exp. Brain Res., 37:495–510, 1979.

    Article  Google Scholar 

  26. CM. Schor, I.C. Wood, and J. Ogawa. Spatial tuning of static and dynamic local stereopsis. Vision Research, 24:573–578, 1984.

    Article  Google Scholar 

  27. R. Schumer and L. Ganz. Independent stereoscopic chanels for different extents of spatial pooling. Vision Research, 19:1303–1314, 1979.

    Article  Google Scholar 

  28. D. J. Tolhurst and L. Ling. Magnification factors and the organization of the human striate cortex. Human neorobiology, 6:247–254, 1988.

    Google Scholar 

  29. C. W. Tyler. Stereoscopic vision: Cortical limitations and a disparity scaling effect. Science, 181:276–278, 1973.

    Article  Google Scholar 

  30. C. W. Tyler. Depth perception in disparity gratings. Nature, 251:140–142, 1974.

    Article  Google Scholar 

  31. C. W. Tyler and B. Julesz. On the depth of the cyclopean retina. Exp. Brain Res., 40:196–202, 1980.

    Article  Google Scholar 

  32. V. Virsu and J. Rovamo. Visual resolution, contrast sensitivity, and the cortical magnification factor. Exp. Brain Res., 37:475–494, 1979.

    Article  Google Scholar 

  33. G. Westheimer. Spatial interaction in the domain of disparity signals in human stereoscopic vision. J. Physiol., 370:619–629, 1986.

    Google Scholar 

  34. G. Westheimer. The ferrier lecture, 1992. seeing depth with two eyes: stereopsis. Proc. R. Soc. Lond. B, 257:205–214, 1994.

    Article  Google Scholar 

  35. H.R. Wilson, R. Blake, and D.L. Halpern. Coarse spatial scales constrain the range of binocular fusion on fine scale. Journal of the Optical Society of America A, 8:229–236, 1991.

    Article  Google Scholar 

  36. H.R. Wilson, R. Blake, and J. Pokorny. Limits of binocular fusion in the short wave sensitive cones. Vision Research, 28:555–562, 1988.

    Article  Google Scholar 

  37. Y. Yeshurun and E. L. Schwartz. Cepstral filtering on a columnar image architecture: a fast algorithm for binocular stereo segmentation. IEEE trans. Pattern Analysis and Machine intelligence, 11:759–767, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schlesinger, B.Y., Yeshurun, Y. (2002). Spatial Size Limits in Stereoscopic Vision. In: Cantoni, V., Marinaro, M., Petrosino, A. (eds) Visual Attention Mechanisms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0111-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0111-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4928-0

  • Online ISBN: 978-1-4615-0111-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics