Skip to main content

Myotonic Dystrophy: Discussion of Molecular Basis

  • Chapter
Triple Repeat Diseases of the Nervous Systems

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 516))

Abstract

Myotonic dystrophy 1 (DM1) is a dominant, neuromuscular disease which represents the most common form of muscular dystrophy with a frequency of 1 in 8,000. Today, there is no cure for this disease. Clinical manifestations vary from the almost asymptomatic condition to the deadly form of disease associated with increased disease severity in generations with reduction of age of onset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Harper PS. Myotonic dystrophy and other autosomal muscular dystrophies. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Diseases. 7th ed. New York: McGraw-Hill, Inc., 1995:4227–4251.

    Google Scholar 

  2. Harper PS, Harley HG, Reardon W et al. Anticipation in myotonic dystrophy: New light on an old problem. Am J Hum Genet 1992; 51:10–16.

    PubMed  CAS  Google Scholar 

  3. Lavedan C, Hofmann-Radvanyi H, Shelbourne P et al. Myotonic dystrophy: Size-and sex-dependent dynamics of CTG meiotic instability, and somatic mosaicism. Am J Hum Genet 1993; 52:875–883.

    PubMed  CAS  Google Scholar 

  4. Tsilfidis C, MacKenzie AE, Mettler G et al. Correlation between CTG trinucleotide repeat length and frequency of severe congenital myotonic dystrophy. Nat Genet 1992; 1:192–195.

    Article  PubMed  CAS  Google Scholar 

  5. Monckton DG, Wong L-JC, Ashizawa T et al. Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: Small pool PCR analyses. Hum Mol Genet 1995; 4:1–8.

    Article  PubMed  CAS  Google Scholar 

  6. Wong L-JC, Ashizawa T, Monckton DG et al. Somatic heterogeneity of the CTG repeat in myotonic dystrophy is age and size dependent. Am J Hum Genet 1995; 56:114–122.

    PubMed  CAS  Google Scholar 

  7. Martorell L, Monckton DG, Gamez J et al. Progression of somatic CTG repeat length heterogeneity in the blood cells of myotonic dystrophy patients. Hum Mol Genet 1998; 7:307–312.

    Article  PubMed  CAS  Google Scholar 

  8. Ashizawa T, Dubel JR, Harati Y. Somatic instability of CTG repeat in myotonic dystrophy. Neurology 1993; 43:2674–2678.

    Article  PubMed  CAS  Google Scholar 

  9. Anvret M, Ahlberg G, Grandell U et al. Larger expansions of the CTG repeat in muscle compared to lymphocytes from patients with myotonic dystrophy. Hum Mol Genet 1993; 2:1397–1400.

    Article  PubMed  CAS  Google Scholar 

  10. Thornton CA, Johnson KJ, Moxley RT. Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann Neurol 1994; 35:104–107.

    Article  PubMed  CAS  Google Scholar 

  11. Bingham PM, Scott MO, Wang S et al. Stability of an expanded trinucleotide repeat in the androgen receptor gene in transgenic mice. Nat Genet 1995; 9:191–196.

    Article  PubMed  CAS  Google Scholar 

  12. Burright EN, Clark HB, Servadio A et al. SCA1 transgenic mice: A model for meurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 1995; 82:937–948.

    Article  PubMed  CAS  Google Scholar 

  13. Goldberg YP, Kalchman MA, Metzler M et al. Absence of disease phenotype and intergenerational stability of the CAG repeat in transgenic mice expressing the human Huntington disease transcript. Hum Mol Genet 1996; 5:177–185.

    Article  PubMed  CAS  Google Scholar 

  14. Monckton DG, Coolbaugh MI, Ashizawa K et al. Hypermutable myotonic dystrophy CTG repeats in transgenic mice. Nat Genet 1997; 15:193–196.

    Article  PubMed  CAS  Google Scholar 

  15. Mangiarinin L, Sathasivam K, Mahal A et al. Instability of highly expanded CAG repeats in mice transgenic for the Huntington’s disease mutation. Nat Genet 1997; 15:197–200.

    Article  Google Scholar 

  16. Gourdon G, Radvanyi F, Lia AS et al. Moderate intergenerational and somatic stability of a 55 CTG repeat in transgenic mice. Nat Genet 1997; 15:190–192.

    Article  PubMed  CAS  Google Scholar 

  17. La Spada AR, Peterson KR, Meadows SA et al. Androgen receptor YAC transgenic mice carrying CAG 45 alleles show trinucleotide repeat instability. Hum Mol Genet 1998; 7:959–967.

    Article  PubMed  Google Scholar 

  18. Sato T, Oyake M, Nakamura K et al. Transgenic mice harboring a full-length human mutant DRPLA gene exhibit age-dependent intergenerational and somatic instabilities of CAG repeats comparable with those in DRPLA patients. Hum Mol Genet 1999; 8:99–106.

    Article  PubMed  CAS  Google Scholar 

  19. Ikeda H, Yamaguchi M, Sugai S et al. Expanded polyglutamine in the Machado-Joseph disease protein induces cell-death in vitro and in vivo. Nat Genet 1996; 13:196–202.

    Article  PubMed  CAS  Google Scholar 

  20. Wheeler VC, Auerbach W, White JK et al. Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse. Hum Mol Genet 1999; 8:115–122.

    Article  PubMed  CAS  Google Scholar 

  21. Shelbourne PF, Killeen N, Hevner RF et al. A Huntington’s disease CAG expansion at the murine Hdh locus is unstable and associated with behavioral abnormalities in mice. Hum Mol Genet 1999; 8:763–774.

    Article  PubMed  CAS  Google Scholar 

  22. Lorenzetti D, Watase K, Xu B et al. Repeat instability and motor incoordination in mice with a targeted expanded CAG repeat in the Scat locus. Hum Mol Genet 2000; 9:779–785.

    Article  PubMed  CAS  Google Scholar 

  23. Seznec H, Lia-Baldini AS, Duros C et al. Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely DM CTG repeat intergenerational and somatic instability. Hum Mol Genet 2000; 9:1185–1194.

    Article  PubMed  CAS  Google Scholar 

  24. Brock GJR, Anderson NH, Monckton DG.Cis-actingmodifiers of expanded CAG/CTG triplet repeat expandability: Associations with flanking GC content and proximity to CpG islands. Hum Mol Genet 1999; 8:1061–1067.

    Article  PubMed  CAS  Google Scholar 

  25. Kaytor MD Burright EN, Duvick LA et al. Increased trinucleotide instability with advanced maternal age. Hum Mol Genet 1997; 6:2135–2139.

    Article  PubMed  CAS  Google Scholar 

  26. .Lia AS, Seznec H, Hoffman-Radvanyi H et al. Somatic instability of the CTG repeat in mice transgenic for the myotonic dystrophy region is age dependent but not correlated to the relative intertissue transcription levels and proliferative capacities. Hum Mol Genet 1998;7:1285-1291.

    Article  PubMed  CAS  Google Scholar 

  27. Fortune MT, Vassilopoulos C, Coolbaught MI et al. Dramatic, expansion-biased, age-dependent, tissue-specific somatic mosaicism in a transgenic mouse model of triplet repeat instability. Hum Mol Genet 2000; 9:439–445.

    Article  PubMed  CAS  Google Scholar 

  28. Kennedy L, Shelbourne PF. Dramatic mutation instability in HD mouse striatum: Does polyglutamine load contribute to cell-specific vulnerability in Huntington’s disease? Hum Mol Genet 2000; 9:2539–2544.

    Article  PubMed  CAS  Google Scholar 

  29. Manley K, Shirley TL, Flaherty L et al.MSII2deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat Genet 1999; 23:471–473.

    Article  PubMed  CAS  Google Scholar 

  30. Whiting EJ, Waring JD, Tamai K et al. Characterization of myotonic dystrophy kinase (DMK) protein in human and rodent muscle and central nervous tissue. Hum Mol Genet 1995; 4:1063–1072.

    Article  PubMed  CAS  Google Scholar 

  31. Lam LT, Pham YC, Man N et al. Characterization of a monoclonal antibody panel shows that the myotonic protein kinase, DMPK, is expressed almost exclusively in muscle and heart. Hum Mol Genet 2000; 9:2167–2173.

    Article  PubMed  CAS  Google Scholar 

  32. Dunne PW, Walch ET, Epstein HF. Phosphotylation reactions of recombinant human myotonic dystrophy protein kinase and their inhibition. Biochem 1994; 33:10809–10814.

    Article  CAS  Google Scholar 

  33. Timchenko L, Nastainczyk W, Schneider T et al. Full-length Myotonin protein kinase (72 kDa) displays serine kinase activity. Proc Nati Acad Sci (USA) 1995; 92:5366–5370.

    Article  CAS  Google Scholar 

  34. Bush EW, Helmke SM, Birnbaum A et al. Myotonic dystrophy protein kinase domains mediate localization, oligomerization, novel catalytic activity, and autoinhibition. Biochem 2000; 39:8480–8490.

    Article  CAS  Google Scholar 

  35. Waring JD, Haq R, Tamai K et al. Investigation of myotonic dystrophy kinase isoform trans-location and membrane association. J Biol Chem 1996; 271:15187–15193.

    Article  PubMed  CAS  Google Scholar 

  36. Shimizu M, Wang W, Walch ET et al. Rac-1 and Raf-1 kinases, components of distinct signalling pathways, activate myotonic dystrophy protein kinase. FEBS Letters 2000; 475:273–277.

    Article  PubMed  CAS  Google Scholar 

  37. Benders AA, Groenen PJ, Oerlemans FT et al. Myotonic dystrophy protein kinase is involved in the modulation of the Ca2+ homeostasis in skeletal muscle cells. J Clin Invest 1997; 100:1440–1447.

    Article  PubMed  CAS  Google Scholar 

  38. Mounsey JP, Mistry DJ, Ai CW et al. Skeletal muscle sodium channel gating in mice deficient in myotonic dystrophy protein kinase. Hum Mol Genet 2000; 9:2313–2320.

    Article  PubMed  CAS  Google Scholar 

  39. Mounsey JP, John JE III, Helmke SM et al. Phospholemman is a substrate for myotonic protein kinase. J Biol Chem 2000; 275:23362–23367.

    Article  PubMed  CAS  Google Scholar 

  40. Hofmann-Radvanyi H, Junien C. Myotonic dystrophy: Over-expression or/and under-expression? A critical review on a controversial point. Neuromuscul Disorders 1993; 3:491–501.

    Google Scholar 

  41. Jansen G, Groenen PJTA, Bachner D et al. Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nat Genet 1996; 13:316–324.

    Article  PubMed  CAS  Google Scholar 

  42. Reddy S, Smith DBJ, Rich MM et al. Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nat genet 1996; 13:325–335.

    Article  PubMed  CAS  Google Scholar 

  43. Saba S, Vanderbrink BA, Luciano B et al. Localization of the sites of conduction abnormalities in a mouse model of myotonic dystrophy. J Cardiovasc Electrophysiol 1999; 10:1214–1220.

    Article  PubMed  CAS  Google Scholar 

  44. Berul CI, Maguire CT, Aronovitz MJ et al. DMPK dosage alterations result in atrioventricular conduction abnormalities in a mouse myotonic dystrophy model. J Clin Invest 1999; 103:1–7.

    Article  Google Scholar 

  45. Alwazzan M, Hamshere MG, Lennon GG et al. Six transcripts map within 20 kilobases of the myotonic dystrophy expanded repeat. Mammal Genome 1998:485–487.

    Google Scholar 

  46. Wang YH, Amirhaeri S, Kang S et al. Preferential nucleosome assembly at DNA triplet repeats from the myotonic dystrophy gene. Science 1994:669–671.

    Google Scholar 

  47. Otten AD, Tapscott SJ. Triplet repeat expansion in myotonic dystrophy alters adjacent chromatin structure. Proc Natl Acad Sci USA 1995; 92:5465–5469.

    Article  PubMed  CAS  Google Scholar 

  48. Thornton CA, Wymer JP, Simmons Z et al. Expansion of the myotonic dystrophy CTG repeat reduces expression of the flanking DMAHP gene. Nat Genet 1997; 16:407–409.

    Article  PubMed  CAS  Google Scholar 

  49. Klesert TR, Otten AD, Bird TD et al. Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP. Nat Genet 1997; 16:402–406.

    Article  PubMed  CAS  Google Scholar 

  50. Kawakami K, Sato S, Ozaki H et al. Six family genes-Structure and function as transcription factors and their role in development. BioEssays 2000; 22:616–626.

    Article  PubMed  CAS  Google Scholar 

  51. Relaix F, Buckingham M. From insect eye to vertebrate muscle: redeployment of a regulatory network. Genes Dev 1999; 13:3171–3178.

    Article  PubMed  CAS  Google Scholar 

  52. Heanue TA, Reshef R, Davis RJ et al. Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Sixl, homologs of genes required for Drosophila eye formation. Genes Dev 1999; 13:3231–3243.

    Article  PubMed  CAS  Google Scholar 

  53. Sarkar PS, Appukuttam B, Han J et al. Heterozygous loss of Six5 in mice is sufficient to cause ocular cataracts. Nat Genet 2000; 25:110–114.

    Article  PubMed  CAS  Google Scholar 

  54. Klesert TR, Cho DH, Clark JI et al. Mice deficient in Six5 develop cataracts: Implications for myotonic dystrophy. Nat Genet 2000:105–109.

    Google Scholar 

  55. Wang J, Pegoraro E, Menegazzo E et al. Myotonic dystrophy: Evidence for a possible dominant-negative RNA mutation. Hum Mol Genet 1995; 4:599–606.

    Article  PubMed  CAS  Google Scholar 

  56. Krahe R, Ashizawa T, Abbruzzese C et al. Effect of myotonic dystrophy trinucleotide repeat expansion on DMPK transcription and processing. Genomics 1995; 28:1–14.

    Article  PubMed  CAS  Google Scholar 

  57. Taneja KL, McCurrach M, Schalling M et al. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol 1995; 128:995–1002.

    Article  PubMed  CAS  Google Scholar 

  58. Amack JD Paguio AP, Mahadevan MS. Cis and trans effects of the myotonic dystrophy (DM) mutation in a cell culture model. Hum Mol Genet 1999; 8:1975–1984.

    Article  PubMed  CAS  Google Scholar 

  59. Davis BM, McCurrach ME, Taneja KL et al. Expansion of a CUG trinucleotide repeat in the 3’ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc Natl Acad Sci USA 1997; 94:7388–7393.

    Article  PubMed  CAS  Google Scholar 

  60. Monckton DG, Ashizawa T, Siciliano MJ. Murine models for myotonic dystrophy. In: Wells RD and Warren ST, eds. Genetics Instabilities and Hereditary Neurological Diseases. San Diego: Academic Press, 1998:181–193.

    Google Scholar 

  61. Mankodi A, Logigian E, Callahan L et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 2000; 289:1769–1773.

    Article  PubMed  CAS  Google Scholar 

  62. Timchenko LT, Timchenko NA, Caskey CT et al. Novel proteins with binding specificity for DNA repeats and RNA CUG repeats: implications for myotonic dystrophy. Hum Mol Genet 1996; 5:115–121.

    Article  PubMed  CAS  Google Scholar 

  63. Timchenko LT, Miller JW, Timchenko NA et al. Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucl Acids Res 1996; 24:4407–4414.

    Article  PubMed  CAS  Google Scholar 

  64. Roberts R, Timchenko NA, Miller JW et al. Altered phosphorylation and intracellular distribution of a (CUG)n triplet repeat RNA-binding protein in patients with myotonic dystrophy and in myotonin protein kinase knockout mice. Proc Natl Acad Sci USA 1997; 94:13221–13226.

    Article  PubMed  CAS  Google Scholar 

  65. Timchenko NA, Cai Z-J, We1m AL et al. RNA CUG repeats sequester CUGBPI and alter protein levels and stability of CUGBPI. J Biol Chem 2001; 276:7820–7826.

    Article  PubMed  CAS  Google Scholar 

  66. Phillips AV, Timchenko LT, Cooper TA. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 1998; 280:737–741.

    Article  Google Scholar 

  67. Michalowski S, Miller JW, Urbinati CR et al. Visualization of double-stranded RNAs from the myotonic dystrophy protein kinase gene and interactions with CUG-binding protein. Nucl Acids Res 1999; 27:3534–3542.

    Article  PubMed  CAS  Google Scholar 

  68. Antic D, Keene JD. Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression. Am J Hum Genet 1997; 61:273–278.

    Article  PubMed  CAS  Google Scholar 

  69. Timchenko NA, We1m AL, Lu X et al. CUG repeat binding protein (CUGBPI) interacts with the 5’ region of C/EBPI mRNA and regulates translation of C/EBP_ isoforms. Nucl Acids Res 1999; 27:4517–4525.

    Article  CAS  Google Scholar 

  70. Ladd AN, Charlet-BN, Cooper TA. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol Cell Biol 2001; 21:1285–1296.

    Article  PubMed  CAS  Google Scholar 

  71. Zhang L, Liu W, Grabowski PJ. Coordinate repression of a trio of neuron-specific splicing events by the splicing regulator PTB. RNA 1999; 5:117–130.

    Article  PubMed  CAS  Google Scholar 

  72. Poleev A, Hartman A, Stamm S. A trans-acting factor, isolated by three hybrid system that influences alternative splicing of the amyloid precursor protein minigene. Eur J Biochem 2000; 267:4002–4010.

    Article  PubMed  CAS  Google Scholar 

  73. Descombes P., Schibler U. A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 1991; 67:569–579.

    Article  PubMed  CAS  Google Scholar 

  74. Calhoven CF, Muller C, Leutz A. Translational control of C/EBPalpha and C/EBPbeta isoform expression. Genes Dev 2000; 14:1920–1932.

    Google Scholar 

  75. Good PJ, Chen Q, Warner SJ et al. A family of human RNA-binding proteins related to the Drosophila Bruno translational regulator. J Biol Chem 2000; 275:28583–28592.

    Article  PubMed  CAS  Google Scholar 

  76. Caskey CT, Swanson MS, Timchenko LT. Myotonic dystrophy: Discussion of molecular mechanism. Cold Spring Harbor Symp Quant Biol 1996; 61:607–614.

    Article  PubMed  CAS  Google Scholar 

  77. Lu X, Timchenko NA, Timchenko LT. Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy. Hum Mol Genet 1999; 8:53–60.

    Article  PubMed  CAS  Google Scholar 

  78. Kim-Ha J, Kerr K, Macdonald PM. Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential. Cell 1995; 81:403–412.

    Article  PubMed  CAS  Google Scholar 

  79. Paillard L, Omilli F, Legagneux V et al. EDEN and EDEN-BP, a cis element and an associated factor that mediates sequence-specific mRNA deadenylation in Xenopus embryos. EMBO J 1998; 17:278–287.

    Article  PubMed  CAS  Google Scholar 

  80. Hwang DM, Hwang WS, Liew CC. Single pass sequencing of a unidirectional human fetal heart cDNA library to discover novel genes of the cardiovascular system. J Mol Card 1994; 26:1329–1333.

    Article  CAS  Google Scholar 

  81. Choi DK, Ito T, Tsukahara F et al. Developmentally regulated expression of mNapor encoding an apoptosis-induced ELAV-type RNA binding protein. Gene 1999; 237:135–142.

    Article  PubMed  CAS  Google Scholar 

  82. Miller JW, Urbinati CR, Teng-Unuay P et al. Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy. EMBO J 2000; 19:4439–4448.

    Article  PubMed  CAS  Google Scholar 

  83. Begemann G, Paricio N, Artero R et al.muscleblinda gene required for photoreceptor differentiation inDrosophila encodes novel nuclear Cys3His-type zinc-finger-containing proteins. Development 1997; 124:4321–4331.

    PubMed  CAS  Google Scholar 

  84. Phylactou LA, Darrah C, Wood MJA. Ribozyme-mediated trans-splicing of a trinucleotide repeat. Nat Genet 1998; 18:378–381.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Timchenko, L.T., Tapscott, S.J., Cooper, T.A., Monckton, D.G. (2002). Myotonic Dystrophy: Discussion of Molecular Basis. In: Timchenko, L.T. (eds) Triple Repeat Diseases of the Nervous Systems. Advances in Experimental Medicine and Biology, vol 516. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0117-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0117-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4931-0

  • Online ISBN: 978-1-4615-0117-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics