Skip to main content

Restricted neuronal expression of ubiquitous mitochondrial creatine kinase: Changing patterns in development and with increased activity

  • Chapter
Guanidino Compounds in Biology and Medicine

Part of the book series: Molecular and Cellular Biochemistry ((DMCB,volume 40))

Abstract

Whereas ATP consumption increases with neural activity and is buffered by phosphocreatine (PCr), it is not known whether PCr synthesis by ubiquitous mitochondrial creatine kinase (uMtCK) supports energy metabolism in all neurons. To explore the possibility that uMtCK expression in neurons is modulated by activity and during development, we used immunocytochemistry to detect uMtCK-containing mitochondria. In the adult brain, subsets of neurons including layer Va pyramidal cells, most thalamic nuclei, cerebellar Purkinje cells, olfactory mitral cells and hippocampal interneurons strongly express uMtCK. uMtCK is transiently expressed by a larger group of neurons at birth. Neurons in all cortical layers express uMtCK at birth (PO), but uMtCK is restricted to layer Va by P12. uMtCK is detected in cerebellar Purkinje cells at birth, but localization to dendrites is only observed after P5 and is maximal on P14. Hippocampal CAl and CA3 pyramidal neurons contain uMtCKpositive mitochondria at birth, but this pattern becomes progressively restricted to interneurons. Seizures induced uMtCK expression in cortical layers II—III and CAl pyramidal neurons. In the cortex, but not in CA1, blockade of seizures prevented the induction of uMtCK. These findings support the concept that uMtCK expression in neurons is ( 1)developmentally regulated in post-natal life, ( 2) constitutively restricted in the adult brain, and ( 3) regulated by activity in the cortex and hippocampus. This implies that mitochondrial synthesis of PCr is restricted to those neurons that express uMtCK and may contribute to protect these cells during periods of increased energy demands. (Mol Cell Biochem244:69-76, 2003)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rango M, Castelli A, Scarlato G: Energetics of 3.5 sec neural activation in humans: A31P MR spectroscopy study. Magnet Res Med 38: 878–883,1997

    Article  CAS  Google Scholar 

  2. Whittingham T, Lipton P: Cerebral synaptic transmission during anoxia is protected by creatine. J Neurochem 37: 1618–1621, 1981

    Article  PubMed  CAS  Google Scholar 

  3. Gould D, Gustine D: Basal ganglia degeneration, myelin alterations, and enzyme inhibition induced in mice by the plant toxin 3-nitropropanoic acid. Neuropathol Appl Neurobiol 8: 377–393, 1982

    Article  PubMed  CAS  Google Scholar 

  4. Matthews R, Yang L, Kenkins B, Ferrant R, Rosen B, Kaddurah-Daouk R, Beal M: Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 18: 156–163, 1998

    PubMed  CAS  Google Scholar 

  5. Balestrino M, Rebaudo R, Lunardi G: Exogenous creatine delays anoxic depolarization and protects from hypoxic damage: Dose-effect relationship. Brain Res 816: 124–130, 1998

    Article  Google Scholar 

  6. Holtzman D, Togliatti A, Khait I, Jensen F: Creatine increases survival and suppresses seizures in the hypoxic immature rat. Ped Res 44: 410–414, 1998

    Article  CAS  Google Scholar 

  7. Jacobus W, Lehninger A: Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. J Biol Chem 248: 4803–4810, 1973

    PubMed  CAS  Google Scholar 

  8. Rojo M, Hovius R, Deme R, Nicolay K, Wallimann T: Mitochondrial creatine kinase mediates contact formation between mitochondrial membranes. J Biol Chem 266: 20290–20295, 1991

    PubMed  CAS  Google Scholar 

  9. Haas R, Strauss A: Separate nuclear genes encode sarcomeric specific and ubiquitous human mitochondria) creatine kinase isoenzymes. J Biol Chem 265: 6921–6927, 1991

    Google Scholar 

  10. Payne R, Haas R, Strauss A: Structural characterization and tissue-specific expression of the mRNAs encoding isoenzymes from two rat mitochondrial creatine kinase genes. Biochim Biophys Acta 1089: 352–361, 1991

    Article  PubMed  CAS  Google Scholar 

  11. Steeghs K, Oerlemans F, Wieringa B: Mice deficient in ubiquitous mitochondrial creatine kinase are viable and fertile. Biochim Biophys Acta 1230: 130–138, 1995

    Article  PubMed  Google Scholar 

  12. Muhlebach S, Wirz T, Brandle U, Perriard J: Evolution of the creatine kinases. J Biol Chem 271: 11920–11929, 1996

    Article  PubMed  CAS  Google Scholar 

  13. Qin W, Khuchua Z, Klein A, Strauss A: Elements regulating cardiomyocyte expression of the human sarcomeric mitochondria) creatine kinase gene in transgenic mice. J Biol Chem 272: 25210–25216, 1997

    Article  PubMed  CAS  Google Scholar 

  14. Payne R, Friedman D, Grant J, Perryman M, Strauss A: CK isoenzymes are highly regulated during pregnancy in rat uterus and placenta. Am J Physiol 265: E624–E635, 1993

    PubMed  CAS  Google Scholar 

  15. Payne R, Strauss A: Expression of mitochondrial creatine kinase genes. Mol Cell Biochem 133: 235–243, 1994

    Article  PubMed  Google Scholar 

  16. Payne R, Strauss A: Developmental expression of sarcomeric and ubiquitous mitochondrial creatine kinase is tissue-specific. Biochim Biophys Acta 1219: 33–39, 1994

    Article  PubMed  CAS  Google Scholar 

  17. Sistermans E, de Kok Y, Peters W, Ginsel L, Jap P, Wieringa B: Tissue-and cell-specific distribution of creatine kinase B: A new and highly specific monoclonal antibody for use in immunohistochemistry. Cell Tissue Res 280: 435–446, 1995

    Article  PubMed  CAS  Google Scholar 

  18. Collins R, Borowsky I: Metabolic architecture of brain: Oxidative and glycolytic systems. In: L. Naet al.(eds). Brain Work and Mental Activity. Alfred Benzon Symposium 31. Munksgaard, Copenhagen, 1991

    Google Scholar 

  19. Wong-Riley M, Welt C: Histochemical changes in cytochrome c oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. Proc Natl Acad Sci USA 77: 2333–7233, 1980

    Article  PubMed  CAS  Google Scholar 

  20. Horton J, Hubel D: Regular patchy distribution of cytochrome c oxidase staining in primary visual cortex of macaque monkey. Nature 292: 762–764, 1981

    Article  PubMed  CAS  Google Scholar 

  21. Livingstone M, Hubel D: Thalamic inputs to cytochrome c oxidase-rich regions in monkey visual cortex. Proc Natl Acad Sci USA 79: 6098–6101, 1982

    Article  PubMed  CAS  Google Scholar 

  22. Friedman D, Roberts R: Compartmentation of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in neurons: Evidence for a creatine phosphate energy shuttle in the adult rat brain. J Comp Neurol 343: 500–511, 1994

    Article  PubMed  CAS  Google Scholar 

  23. Hemmer W, Zanolla E, Furter-Graves E, Eppenberger H, Walliman T: Creatine kinase isoenzymes in chicken cerebellum: Specific localization of brain-type creatine kinase in Bergman glial cells and muscle-type creatine kinase in Purkinje neurons. Eur J Neurosci 6: 538–549, 1994

    Article  PubMed  CAS  Google Scholar 

  24. Kaldis P, Hemmer W, Zanolla E, Holtzman D, Walliman T: `Hot spots’ of creatine kinase localization in brain: Cerebellum, hippocampus and choroid plexus. Dev Neurosci 18: 542–554, 1996

    Article  PubMed  CAS  Google Scholar 

  25. Khuchua Z, Qin W, Boero J, Cheng J, Payne R, Saks V, Strauss A: Octamer formation and coupling of cardiac sarcomeric mitochondrial creatine kinase are mediated by charge N-terminal residues. J Biol Chem 273: 22990–22996, 1998

    Article  PubMed  CAS  Google Scholar 

  26. Morrison R, Wenzel H, Kinoshita Y, Robbins C, Donehower L, Schwartzkroin P: Loss of p53 suppresor gene protects neurons from kainate-induced cell death. J Neurosci 16: 1337–1345, 1996

    PubMed  CAS  Google Scholar 

  27. Kokate T, Cohen A, Karp E, Rogawski M: Neuroactive steroids protect against pilocarpine-and kainic acid-induced limbic seizures and status epilepticus in mice. Neuropharm 35: 1049–1056, 1996

    Article  CAS  Google Scholar 

  28. Kageyama G, Wong-Riley G: Histochemical localization of cytochrome oxidase in the hippocampus: Correlation with specific neuronal types and afferent pathways. Neuroscience 7: 2337–2361, 1982

    Article  PubMed  CAS  Google Scholar 

  29. Schwartzkroin P, Kundel D: Morphology of identified interneurons in the CAl region of guinea pig hippocampus. J Comp Neurol 232: 205–218, 1985

    Article  PubMed  CAS  Google Scholar 

  30. Schwartzkroin P, Mathers L: Physiological and morphological identification of a nonpyramidal hippocampal cell type. Brain Res 157: 110, 1978

    Article  Google Scholar 

  31. Tsuji M, Mulkern R, Cook C, Meyers R, Holtzman D: Relative phosphocreatine and nucleoside triphosphate concentrations in cerebral g ray and white matter measuredin vivoby31P nuclear magnetic resonance. Brain Res 707: 146–154, 1996

    Article  PubMed  CAS  Google Scholar 

  32. Mason G, Chu W, Vaughan J, Ponder S, Twieg D, Adams D, Hetherington H: Evaluation of31P metabolite differences in human cerebral gray and white matter. Magnet Res Med 39: 346–353, 1998

    Article  CAS  Google Scholar 

  33. White E, Amitai Y, Gutnick M: A comparison of synapses onto the somata of intrinsically bursting and regular spiking neurons in layer V of rat SmI cortex. J Comp Neurol 342: 1–14, 1994

    Article  PubMed  CAS  Google Scholar 

  34. De la Peña E, Guijo-Barrientos E: Laminar localization, morphology, and physiological properties of pyramidal neurons that have the low-threshold calcium current in guinea-pig medial frontal cortex. J Neurosci 16: 5301–5311, 1996

    PubMed  Google Scholar 

  35. Schwindt P, O’Brien J, Crill W: Quantitative analysis of firing properties of pyramidal neurons from layer 5 of rat somatosensory cortex. J Neurophysiol 77: 2484–2498, 1997

    PubMed  CAS  Google Scholar 

  36. Woolsey T, Van der Loos H: The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17: 205–242, 1970

    Article  PubMed  CAS  Google Scholar 

  37. McCasland J, Hibbard L, Rhoades R, Woolsey R: Activation of a widespread network of inhibitory neurons in barrel cortex. Somatosens Motor Res 14: 138–147, 1997

    Article  CAS  Google Scholar 

  38. Tolkovsky A, Suidan H: Adenosine 5’-triphosphate synthesis and metabolism localized in neuritis of cultured sympathetic neurons. Neuroscience 23: 1133–1142, 1987

    Article  PubMed  CAS  Google Scholar 

  39. Skladchikova G, Ronn L, Berezin V, Bock E: Extracellular adenosine triphosphate affects neuronal cell adhesion molecule (NCAM)-mediated adhesion and neurite outgrowth. J Neurosci Res 57: 207–218, 1999

    Article  PubMed  CAS  Google Scholar 

  40. Hirose Y, Manley J: Creatine phosphate, not ATP, is required for 3’ end cleavage of mammalian pre-mRNAin vitro.J Biol Chem 272: 29636–29642, 1997

    Article  PubMed  CAS  Google Scholar 

  41. Crino P, Eberwine J: Molecular characterization of the dendrite growth cone: Regulated mRNA transport and local protein synthesis. Neuron 17: 1173–1187, 1996

    Article  PubMed  CAS  Google Scholar 

  42. Holtzman D, Meyers R, O’Gorman E, Khait I, Walliman T, Allred E, Jensen F:In vivobrain phosphocreatine and ATP regulation in mice fed a creatine analog. Am J Physiol 272: C1567–C1577, 1997

    PubMed  CAS  Google Scholar 

  43. Klivenyi P, Ferrante R, Matthews R, Bogdanov M, Klein A, Andreassen O, Mueller G, Wermer M, Kaddurah-Daouk R, Beal M: Neuroprotective effects of creatine in transgenic animal model of amyotrophic lateral sclerosis. Nature Med 5: 347–350, 1999

    Article  PubMed  CAS  Google Scholar 

  44. Matthews R, Ferrante R, Klivenyi P, Yang L, Klein A, Mueller G, Kaddurah-Daouk R, Beal M: Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 157: 142–149, 1999

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boero, J., Qin, W., Cheng, J., Woolsey, T.A., Strauss, A.W., Khuchua, Z. (2003). Restricted neuronal expression of ubiquitous mitochondrial creatine kinase: Changing patterns in development and with increased activity. In: Clark, J.F. (eds) Guanidino Compounds in Biology and Medicine. Molecular and Cellular Biochemistry, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0247-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0247-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4985-3

  • Online ISBN: 978-1-4615-0247-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics