Skip to main content

Bicarbonate Enhances Nitration and Oxidation Reactions in Biological Systems—Role of Reactive Oxygen and Nitrogen Species

  • Chapter
Biological Reactive Intermediates VI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 500))

Abstract

Bicarbonate anion (HCO -3 ) is present at high concentration (25 mM) in biological fluids. At this HCO3 concentration, the carbon-di-oxide (CO2) concentration is estimated to be ca. 1.2 mM at physiological conditions. A major function of the HCO -3 CO2 couple in biological systems is to regulate pH. Although HCO -3 -mediated enhancement of luminol oxidation was reported several decades ago (Hodgson and Fridovich, 1976), only recently was the role of HCO -3 recognized in biological oxidations (Denicola et al 1996; Ischiropoulos et al 1992; Lymar et al 1996; Singh et al 1998; Zhang et al 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beckman, J. S., 1996, Oxidative damage and tyrosine nitration by peroxynitrite Chem. Res. Toxicol. 9: 836–844.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B.A., 1990, Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide Proc. Natl. Acad. Sci. USA 87: 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  • Bonini, M. G., Radi, R., Ferrer-Sueta, G., Ferreira, A. M. D. C., and Augusto, O., 1999, Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide J Biol. Chem. 274: 10802–10806.

    Article  PubMed  CAS  Google Scholar 

  • Denicola, A., Freeman, B. A., Trujillo, M., and Radi, R., 1996, Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations Arch. Biochem. Biophys. 333: 49–58.

    Article  PubMed  CAS  Google Scholar 

  • Eiserich, J. P., Hristova, M., Cross, C. E., Jones, A. D., Freeman, B. A., Halliwell, B., and Van der Vliet, A., 1998, Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase and neutrophils Nature 391: 393–397.

    Article  PubMed  CAS  Google Scholar 

  • Goss, S. P. A., Singh, R. J., and Kalyanaraman, B., 1999, Bicarbonate enhances the peroxidase activity of Cu,Zn-superoxide dismutase—role of carbonate anion radical J. Biol. Chem. 274: 28233–28239.

    Article  PubMed  CAS  Google Scholar 

  • Hodgson, E. K., and Fridovich, I., 1975a, The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme Biochemistry 14: 5294–5298.

    Article  CAS  Google Scholar 

  • Hodgson, E. K., and Fridovich, I., 1975b, The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: chemiluminescence and peroxidation Biochemistry 14: 5299–5303.

    Article  CAS  Google Scholar 

  • Hodgson, E. K., and Fridovich, I., 1976, The mechanism of the activity-dependent luminescence of xanthine oxidase Arch. Biochem. Biophys. 172: 202–205.

    Article  PubMed  CAS  Google Scholar 

  • Ischiropoulos, H., 1998, Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive nitrogen species Arch. Biochem. Biophys. 356: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Ischiropoulos, H., Zu, Li., Chen, J., Tsai, M., Martin, J. C., Smith, C. D., and Beckman, J. S., 1992, Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase Arch. Biochem. Biophys. 298: 438–445.

    Article  PubMed  Google Scholar 

  • Jacob, J. S., Cistola, D. P., Hsu, F. F., Muzaffar, S., Mueller, D. M., Hazen, S. L., and Heinecke, J. W., 1996, Human phagocytes employ the myeloperoxidase-hydrogen peroxide system to synthesize dityrosine, trityrosine, pulcherosine, and isodityrosine by a tyrosyl radical-dependent pathway J. Biol. Chem. 271: 19950–19956.

    Article  PubMed  CAS  Google Scholar 

  • Liochev, S. I., and Fridovich, I., 1999, On the role of bicarbonate in peroxidations catalyzed by Cu,Zn superoxide dismutase Free Radic. Biol. Med. 27: 1444–1447.

    Article  PubMed  CAS  Google Scholar 

  • Lymar, S. B., Jiang, Q., and Hurst, J. K., 1996, Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite Biochemistry 35: 7855–7881.

    Article  PubMed  CAS  Google Scholar 

  • Sankarapandi, S., and Zweier, J., 1999, Bicarbonate is required for the peroxidase activity of Cu,Zn-superoxide dismutase at physiological pH J. Biol. Chem. 274: 1226–1232.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R. J., Goss, S. P. A., Joseph, J., and Kalyanaraman, B,1998, Nitration of γ-tocopherol and oxidation of a-tocopherol by Cu,ZnSOD/H2O2/N0: role of nitrogen dioxide free radical Proc. Natl. Acad. Sci. USA 95: 12912–12917.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R. J., Karoui, H., Gunther, M. R., Beckman, J. S., Mason, R. P., and Kalyanaraman, B., 1998, Reexamination of the mechanism of hydroxyl radical adducts formed from the reaction between familial amyotrophic lateral sclerosis-associated Cu,Zn superoxide dismutase mutants and H2O2 Proc. Natl. Acad. Sci. USA 95: 6675–6680.

    Article  PubMed  CAS  Google Scholar 

  • Wiedau-Pazos, M., Goto, J. J., Rabizadeh, S., Gralla, E. B., Roe, J. A., Lee, M. K., Valentine, J. S., and Bredesen, D. E., 1996, Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis Science 271: 515–518.

    Article  PubMed  CAS  Google Scholar 

  • Yim, M. B., Chock, P. B,and Stadtman, E. R., 1993, Enzyme function of copper,zinc superoxide dismutase as a free radical generator J. Biol. Chem. 274: 1226–1232.

    Google Scholar 

  • Yim, M. B., Kang, J.-H., Yim, H.-S., Kwak, H.-S., Chock, P. B,and Stadtman, E. R., 1996, A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Znsuperoxide dismutase mutant: an enhancement of free radical formation due to a decrease in Kmfor hydrogen peroxide Proc. Natl. Acad. Sci. USA 93:5709–5714.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Squadrito, G. C., and Pryor, W. A., 1997, The mechanism of the peroxynitritecarbon dioxide reaction proved using tyrosine Nitric Oxide: Biology and Chemistry 1:301–307.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kalyanaraman, B., Joseph, J., Zhang, H. (2001). Bicarbonate Enhances Nitration and Oxidation Reactions in Biological Systems—Role of Reactive Oxygen and Nitrogen Species. In: Dansette, P.M., et al. Biological Reactive Intermediates VI. Advances in Experimental Medicine and Biology, vol 500. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0667-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0667-6_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5185-6

  • Online ISBN: 978-1-4615-0667-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics