Skip to main content

Sensory Control of Locomotion: Reflexes Versus Higher-Level Control

  • Chapter
Sensorimotor Control of Movement and Posture

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 508))

Abstract

In the absence of sensory input, the central nervous system can generate a rhythmical pattern of coordinated activation of limb muscles. Contracting muscles have springlike properties. If synergistic muscles are co-activated in the right way, sustained locomotion can occur. What is the role of sensory input in this scheme? In this chapter we first discuss the implications of positive force feedback control in hindlimb extensor reflexes in the cat. We then raise the question of whether the sensory-evoked responses, which are modest in size and quite delayed in the stance phase, contribute to any significant extent. A locomotor model is used to show that when centrally generated activation levels are low, stretch reflexes can be crucial. However, when these levels are higher, stretch reflexes have a less dramatic role. The more important role for sensory input is probably in mediating higher level control decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelew, T. A., Miller, M. D., Cope, T. C., and Nichols, T. R., 2000, Local loss of proprioception results in disruption of interjoint coordination during locomotion in the catJournal of Neurophysiology84, 2709–2714.

    PubMed  CAS  Google Scholar 

  • Allum, J. H., Mauritz, K. H., and Vogele, H., 1982, The mechanical effectiveness of short latency reflexes in human triceps surae muscles revealed by ischaemia and vibrationExperimental Brain Research48, 153–156.

    Article  CAS  Google Scholar 

  • Bennett, D. J., De Serres, S. J., and Stein, R. B., 1996, Gain of the triceps surae stretch reflex in decerebrate and spinal cats during postural and locomotor activitiesJournal of Physiology496, 837–850.

    PubMed  CAS  Google Scholar 

  • Bennett, D. J., Gorassini, M., and Prochazka, A., 1994, Catching a ball: contributions of intrinsic muscle stiffness, reflexes, and higher order responses, CanadianJournal of Physiology and Pharmacology72, 525–534.

    Article  CAS  Google Scholar 

  • Conway, B. A., Hultbom, H., and Kiehn, O., 1987, Proprioceptive input resets central locomotor rhythm in the spinal catExperimental Brain Research68, 643–656.

    Article  CAS  Google Scholar 

  • Engberg, I., and Lundberg, A., 1968, An electromyographic analysis of muscular activity in the hindlimb of the cat during unrestrained locomotionActa Physiologica Scandinavica75, 614–630.

    Article  Google Scholar 

  • Giuliani, C. A., and Smith, J. L., 1987, Stepping behaviors in chronic spinal cats with one hindlimb deafferentedJournal of Neuroscience7, 2537–2546.

    PubMed  CAS  Google Scholar 

  • Goldberger, M. E. 1977 Locomotor recovery after unilateral hindlimb deafferentation in catsBrain Research123, 59–74.

    Article  PubMed  CAS  Google Scholar 

  • Gorassini, M. A., Prochazka, A., Hiebert, G. W., and Gauthier, M. J., 1994, Corrective responses to loss of ground support during walking. I. Intact catsJournal of Neurophysiology71, 603–610.

    PubMed  CAS  Google Scholar 

  • Granat, M. H., Heller, B. W., Nicol, D. J., Baxendale, R. H., and Andrews, B. J., 1993, Improving limb flexion in FES gait using the flexion withdrawal response for the spinal cord injured personJournal of Biomedical Engineering15, 51–56.

    Article  PubMed  CAS  Google Scholar 

  • Guertin, P., Angel, M. J., Perreault, M. C., and McCrea, D. A., 1995, Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the catJournal of Physiology487, 197–209.

    PubMed  CAS  Google Scholar 

  • Hogan, N., 1985, The mechanics of multi joint posture and movement controlBiological Cybernetics52, 315–331.

    Article  PubMed  CAS  Google Scholar 

  • Iacquaniti, F., Borghese, N. A., and Carrozzo, M., 1991, Transient reversal of the stretch reflex in human arm musclesJournal of Neurophysiology66, 939–954.

    Google Scholar 

  • Lang, C. E., and Bastian, A. J., 1999, Cerebellar subjects show impaired adaptation of anticipatory EMG during catchingJournal of Neurophysiology82, 2108–2119.

    PubMed  CAS  Google Scholar 

  • Massion, J., 1994, Postural control systemCurrent Opinion in Neurobiology4, 877–887.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, P.B.C., 1972Mammalian Muscle Receptors and Their Central ActionsArnold, London.

    Google Scholar 

  • Nelson, G. M., and Quinn, R. D., 1999, Posture control of a cockroach-like robotIEEE Transactions on Control Systems19, 9–14.

    Article  Google Scholar 

  • Neptune, R. R., Kautz, S. A., and Zajac, F. E., 2001, Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walkingJournal of Biomechanicsin press. Ogihara, N., and Yamazaki, N., 2001, Generation of human bipedal locomotion by a No-mimetic neuromusculo-skeletal modelBiological Cybernetics84, 1–11.

    Google Scholar 

  • Partridge, L. D., 1966, Signal-handling characteristics of load-moving skeletal muscleAmerican Journal of Physiology210, 1178–1191.

    PubMed  CAS  Google Scholar 

  • Pearson, K. G., and Collins, D. F., 1993, Reversal of the influence of group lb afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activityJournal of Neurophysiology70, 1009–1017.

    PubMed  CAS  Google Scholar 

  • Prochazka, A., 1993, Comparison of natural and artificial control of movement. IEEETransactions on Rehabilitation Engineering1, 7–16.

    Article  Google Scholar 

  • Prochazka, A., 1999, Quantifying proprioception, in:Peripheral and spinal mechanisms in the neural control of movementM. D. Binder ed., Elsevier, Amsterdam.

    Google Scholar 

  • Prochazka, A., Gillard, D., and Bennett, D.J., 1997a, Implications of positive feedback in the control of movementJournal of Neurophysiology77, 3237–3251.

    CAS  Google Scholar 

  • Prochazka, A., Gillard, D., and Bennett, D. J., 1997b, Positive force feedback control of musclesJournal of Neurophysiology77, 3226–3236.

    CAS  Google Scholar 

  • Prochazka, A., Schofield, P., Westerman, R. A., and Ziccone, S. P., 1977, Reflexes in cat ankle muscles after landing form fallsJournal of Physiology272, 705–719.

    PubMed  CAS  Google Scholar 

  • Prochazka, A., Westerman, R. A., and Ziccone, S. P., 1976, Discharges of single hindlimb afferents in the freely moving catJournal of Neurophysiology39, 1090–1104.

    PubMed  CAS  Google Scholar 

  • Prochazka, A., and Yakovenko, S., 2001, Locomotor control: from spring-like reactions of muscles to neural prediction, in:The Somatosensory System: Deciphering The Brain’s Own Body ImageR. Nelson, ed., CRC Press, Boca Raton.

    Google Scholar 

  • Quinn, R. D., and Ritzmann, R. E., 1998, Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robotConnection Science10, 239–254.

    Article  Google Scholar 

  • Rasmussen, S. A., Goslow, G. E., and Hannon, P., 1986, Kinematics of locomotion in cats with partially deafferented spinal cords: the spared-root preparationNeuroscience Letters65, 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Stein, R. B., Misiaszek, J. E., and Pearson, K. G. 2000, Functional role of muscle reflexes for force generation in the decerebrate walkingcat Journal of Physiology525, 781–791.

    Article  PubMed  CAS  Google Scholar 

  • Taga, G., 1995a, A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gaitBiological Cybernetics73, 97–111.

    Article  CAS  Google Scholar 

  • Taga, G., 1995b, A model of the neuro-musculo-skeletal system for human locomotion. II Real-time adaptability under various constraintsBiological Cybernetics73, 113–121.

    Article  CAS  Google Scholar 

  • Taga, G., Yamaguchi, Y., and Shimizu, H., 1991, Self-organized control of bipedal locomotion by neural oscillators in unpredictable environmentBiological Cybernetics65, 147–159.

    Article  PubMed  CAS  Google Scholar 

  • Trend, P., 1987, Gain control in proprioceptive pathways, Ph.D., London, UK, University of London, 280. Wetzel, M. C., Atwater, A. E., Wait, J. V., and Stuart, D. G., 1976, Kinematics of locomotion by cats with a single hindlimb deafferentedJournal of Neurophysiology39, 667–678.

    Google Scholar 

  • Yakovenko, S., Mushahwar, V., Vanderhorst, V., Holstege, G., and Prochazka, A., 2002, Spatiotemporal activation of lumbosacral motoneurons in the cat locomotor step cycleJournal of Neurophysiology87, 1542–1553.

    PubMed  Google Scholar 

  • Yamazaki, N., Hase, K., Ogihara, N., and Hayamizu, N., 1996, Biomechanical analysis of the development of humanbipedal walking by a neuro-musculo-skeletal modelFolia Primatologica66, 253–271.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prochazka, A., Gritsenko, V., Yakovenko, S. (2002). Sensory Control of Locomotion: Reflexes Versus Higher-Level Control. In: Gandevia, S.C., Proske, U., Stuart, D.G. (eds) Sensorimotor Control of Movement and Posture. Advances in Experimental Medicine and Biology, vol 508. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0713-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0713-0_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5206-8

  • Online ISBN: 978-1-4615-0713-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics