Skip to main content

Striatal Tans do not Report Prediction Error

  • Chapter
The Basal Ganglia VII

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 52))

  • 182 Accesses

Abstract

The main cortical input structure of the basal ganglia, the striatum, is also the main domain of action of two extremely powerful modulators of neuronal transmission, as indicated by density of their respective markers - dopamine and acetylcholine (Parent et al., 1995; Gerfen and Wilson, 1996). The close interaction and similarity of function between the two substances in the basal ganglia has been widely stressed in the past. It is becoming increasingly evident that normal performance of the basal ganglia requires a delicate balance of the two substances. Symptoms of Parkinson’s disease, the main pathological finding of which is degeneration of the dopamine systems, are alleviated by pharmacological administration of anti-cholinergic agents (Barbeau, 1962). Both dopamine and acetylcholine have been shown to modulate cortico-striatal transmission in a temporally precise manner (Kerr and Wickens. 2001; Calabresi et al., 2000; Centonze et al., 1999). It is therefore almost natural to consider both the dopamine and acetylcholine striatal systems as one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aosaki, T., Kimura, M., Graybiel, A.M., 1995, Temporal and spatial characteristics of tonically active neurons of the primate’s striatumJ Neurophysiol. 73:1234–1252.

    PubMed  CAS  Google Scholar 

  • Aosaki, T., Tsubokawa, H., Ishida, A., Watanabe, K., Graybiel A.M., Kimura, M., 1994, Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioningJ Neurosci.14: 3969–3984.

    PubMed  CAS  Google Scholar 

  • Apicella, P., Legallet, E., Trouche, E., 1997, Responses of tonically discharging neurons in the monkey striatum to primary rewards delivered during different behavioral statesExp Brain Res. 116:456–466.

    Article  PubMed  CAS  Google Scholar 

  • Apicella, P., Ravel, S., Sardo, P., Legallet, E., 1998, Influence of predictive information on responses of tonically active neurons in the monkey striatumJ Neurophysiol. 80:3341–3344.

    PubMed  CAS  Google Scholar 

  • Barbeau, A., 1962, The pathogensis of Parkinson’s disease: A new hypothesis.Canad Med Ass. J87: 802–807.

    PubMed  CAS  Google Scholar 

  • Bennett, B.D., Callaway, J.C., Wilson, C.J., 2000, Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergie interneuronsJ Neurosci. 20:8493–8503.

    PubMed  CAS  Google Scholar 

  • Bennett, B.D., Wilson, C.J., 1999, Spontaneous activity of neostriatal cholinergie interneurons in vitroJ Neurosci. 19:5586–5596.

    PubMed  CAS  Google Scholar 

  • Bolam, J.P., Hanley, J.J., Booth, P.A., Bevan, M.D., 2000, Synaptic organisation of the basal gangliaJ Anat 196:527–542.

    Article  PubMed  CAS  Google Scholar 

  • Calabresi, P., Centonze, D., Gubellini, P., Pisani, A., Bernardi, G., 2000, Acetylcholine-mediated modulation of striatal functionTrends Neurosci. 23:120–126.

    Article  PubMed  CAS  Google Scholar 

  • Centonze, D., Gubellini, P., Picconi, B., Calabresi, P., Giacomini, P., Bemardi, G., 1999, Unilateral dopamine denervation blocks corticostriatal LTPJ Neurophysiol. 82:3575–3579.

    PubMed  CAS  Google Scholar 

  • Contreras, V.J., Schultz, W., 1999, A predictive reinforcement model of dopamine neurons for learning approach behaviorJ Comput Neurosci. 6:191–214.

    Article  Google Scholar 

  • Doya, K., 2000, Complementary roles of basal ganglia and cerebellum in learning and motor control.Curr Opin Neurobiol.10: 732–739.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.R., Wilson, C.J., 1996. The basal ganglia, in:Handbook of Chemical Neuroanatomy Vol 12: Integrated Systems of the CNS Part IIIL.W. Swanson, A. Bjorklund, T. Hokfelt, eds., Elsevier Science, Amsterdam, pp. 371–468.

    Google Scholar 

  • Graybiel, A.M., Aosaki, T., Flaherty, A.W., Kimura, M., 1994, The basal ganglia and adaptive motor controlScience.265: 1826–1831.

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka, O., Sakamoto, M., Usui, S., 1989, Functional properties of monkey caudate neurons I Activities related to saccadic eye movementsJ Neurophysiol.61: 780–798.

    PubMed  CAS  Google Scholar 

  • Hollerman, J.R., Schultz, W., 1998, Dopamine neurons report an error in the temporal prediction of reward during learningNat Neurosci.1: 304–309.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, J.N., Wickens, J.R., 2001, Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitroJ Neurophysiol.85: 117–124.

    PubMed  CAS  Google Scholar 

  • Kimura, M., Rajkowski, J., Evarts, E., 1984, Tonically discharging putamen neurons exhibit set-dependent responsesProc Nail Acad Sci USA.81: 4998–5001.

    Article  CAS  Google Scholar 

  • Parent, A., Cote, P.Y., Lavoie, B., 1995, Chemical anatomy of primate basal gangliaProg Neurobiol46: 131–197.

    PubMed  CAS  Google Scholar 

  • Ravel, S., Legallet, E., Apicella, P., 1999, Tonically active neurons in the monkey striatum do not preferentially respond to appetitive stimuliExp Brain Res.128: 531–534.

    Article  PubMed  CAS  Google Scholar 

  • Ravel, S., Sardo, P., Legallet, E., Apicella, P., 2001, Reward unpredictability inside and outside of a task context as a determinant of the responses of tonically active neurons in the monkey striatumJ Neurosci.21: 5730–5739.

    PubMed  CAS  Google Scholar 

  • Raz, A., Feingold, A., Zelanskaya, V., Vaadia,.E, Bergman, H., 1996, Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primatesJ Neurophysiol. 76: 2083–2088.

    PubMed  CAS  Google Scholar 

  • Redgrave, P., Prescott, T.J., Gurney, K., 1999, Is the short-latency dopamine response too short to signal reward error?Trends Neurosci22: 146–151.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, W., 1998, Predictive reward signal of dopamine neuronsJNeurophysiol.80: 1–27.

    CAS  Google Scholar 

  • Schultz, W., 2000, Multiple reward signals in the brainNat Rev Neurosci.1: 199–207.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, W., Dayan, P., Montague, P.R., 1997, A neural substrate of prediction and rewardScience.275: 1593–1599.

    Article  PubMed  CAS  Google Scholar 

  • Shimo, Y., Hikosaka, O., 2001, Role of Tonically Active Neurons in Primate Caudate in Reward-Oriented Saccadic Eye MovementJ Neurosci.21: 7804–7814.

    PubMed  CAS  Google Scholar 

  • Suri, R.E., Schultz, W., 2001, Temporal difference model reproduces anticipatory neural activity, Neuralcomput.13: 841–862.

    CAS  Google Scholar 

  • Sutton, R.S., Barto, A.G., 1998, Reinforcement Learning - an Introduction, The MIT Press, Cambridge, Massachsetts.

    Google Scholar 

  • Wilson, C.J., Chang, H.T., Kitai, S.T., 1990, Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatumJ Neurosci.10: 508–519.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morris, G., Raz, A., Arkadir, D., Bergman, H. (2002). Striatal Tans do not Report Prediction Error. In: Nicholson, L.F.B., Faull, R.L.M. (eds) The Basal Ganglia VII. Advances in Behavioral Biology, vol 52. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0715-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0715-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5207-5

  • Online ISBN: 978-1-4615-0715-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics