Skip to main content

Optimization of the Hot-Electron Bolometer and A Cascade Quasiparticle Amplifier for Space Astronomy

  • Conference paper
International Workshop on Superconducting Nano-Electronics Devices

Abstract

Ultra low noise bolometers are required for space - based astronomical observations. Extremely sensitive detectors are necessary for a deep full-sky survey of distant extragalactic sources in the submillimeter-wave region corresponding to the extraterrestrial background spectrum minimum. A deep full-sky survey is the main goal of the Submillimetron project of the cryogenically cooled telescope on the International Space Station [1,2], project CIRCE (NASA) and other projects. Detection of faint sources involwes wide-band continuum observation using direct detectors (bolometers) that are not restricted by the quantum noise of indirect heterodyne receivers. Theoretical estimations and preliminary experiments show that it is possible to realize the necessary sensitivity of 10−18 − 10−19 W/Hz1/2 with antenna-coupled microbolometers at temperatures ≤0.1 K. Additional advantages of such detectors are the possibility to operate with a wide range of background load, easy integration in arrays, and direct possibility of polarization measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. REFERENCES

  1. 1. http://fvxhalmers.se/~f4agro/Submillimetron/ - Suhmilftmetron Project

    Google Scholar 

  2. Gromov, V. D., L. S. Kuzmin, D. Chouvaev, L. A. Gorshkov, N.S.Kardashev, V. L Stysh, S. F. Stoiko, M. A. Tarasov, A. G. Trabnikov, A. N. Vystavkin. “Submillimeter Telescope for the Russian Segment of the ISS: Submillimetron Project”, Proceedings of The Promise of FIRST” symposium, December 2000, Toledo, Spain, ed. G.L. Pilbratt, J. Cernicharo, A.M. Heras, T. Prusti, & R. Harris, ESA SP-460 (2001)

    Google Scholar 

  3. M. Nahum, P. Richards and C. Mears. IEEE Trans.on Appl. Superc., 3,2124 (1993).

    Article  ADS  Google Scholar 

  4. M. Nahum, J.M. Martinis, Appl. Phys. Lett, 63, N 22, pp. 3075–3077 (1993).

    Article  ADS  Google Scholar 

  5. L. Kuzmin, D. Chouvaev, M. Tarasov, P. Sundquist, M. WiHander, T. Claeson. IEEE Trans. Appl. Supercond., 9, pp. 3186–3189(1999).

    Article  Google Scholar 

  6. L. S. Kuzmin. On the concept of a hot-electron microbolometer with capacitive coupling to the antenna, Physica B: Condensed Matter, 284–288,2129 (2000).

    Google Scholar 

  7. L. Kuzmin, L Devyatov, and D Gotubev. “Cold-electron” bolometer with electronic microrenigeration and the general noise analysis”. Proceeding of SPIE, v. 3465, The 4th International conference on mm and submm waves, San-Diego, pp. 193–199, July 1998.

    Google Scholar 

  8. D. Golubev, and L. Kuzmin, KoneqmTibrium theory of a hot-electron microbolometer with NIS tunnel junction”, Journal of Applied Physics, 89,6464–6472 (2001).

    Article  ADS  Google Scholar 

  9. A. Lee, P. Richards, S. Nam, B, Cabrera, K. Irwin, A superconducting bolometer with strong electrothermal feedback, Applied Physics Letters, 69,1801–1803 (1996).

    Article  ADS  Google Scholar 

  10. J. Pekola, D. Anghel, T. Suppola, J. Suoknuuti, and A. Manninen, Trapping of quasiparticles of a nonequilibrium suvaxxmductor, Applied Physics Letters, 76,2782–2784 (2000).

    Article  ADS  Google Scholar 

  11. N. Booth, Quaiparucle trapping and quasiparncle multiplier, Applied Physics Letters, 50, 293–295 (1987).

    Article  ADS  Google Scholar 

  12. 12. N. Booth, P. Fisher, M Nahum, and J. Ullom, A superconducting transistor based on quasiparticle trapping

    Google Scholar 

  13. A. Bitterman. “Superconducting Detectors for Astronomy”, Superconductor & Cryoelectronics, Vol. 12, No. 2, p17 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this paper

Cite this paper

Kuzmin, L. (2002). Optimization of the Hot-Electron Bolometer and A Cascade Quasiparticle Amplifier for Space Astronomy. In: Pekola, J., Ruggiero, B., Silvestrini, P. (eds) International Workshop on Superconducting Nano-Electronics Devices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0737-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0737-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5217-4

  • Online ISBN: 978-1-4615-0737-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics