Skip to main content

Measurement of Photobiological Exposure of Ocular Tissues

  • Chapter
Biologic Effects of Light 2001
  • 165 Accesses

Abstract

Because of a number of geometrical shading factors, such as the eyelids and brow ridge, the human eye is actually exposed to a very small fraction of incident ultraviolet radiation (UVR). The retina is exposed to visible light and some IR-A radiant energy within an imaged scene. These geometrical and imaging factors challenge the task of attempting to accurately measure the photobiologically significant exposure of the cornea, lens and retina to ultraviolet, visible and infrared radiation.

The lid opening varies with ambient scene luminance (brightness). It is possible to mathematically predict the opening of the lids and the angular field-of-view from our studies of lid opening. This aids in setting the field-of-view of measurement instruments designed to measure the UVR exposure dose to the cornea and lens. We have measured the UV exposure to the anterior segment of the eye as would occur when a person wears different types of sunglasses. The exposure is greatly affected by the type of sunglass frame and partially to the UV transmittance of the sunglass lenses. In some instances, UV exposures of some specific ocular tissues can actually equal or exceed those when not wearing sunglasses.

The light exposure to the retina is not at all uniform in outdoor daylight conditions. The central and superior regions of the retina receive much more light than the inferior retina. Thus instrumentation should simulate these geometrical factors.

Instrumentation designed to determine the photobiological dose to ocular tissues must therefore have acceptance field-of-views that mimic those of the human eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACGIH, Documentation for the Threshold Limit Values 4th Edn, Cincinnati: American Conference of Governmental Industrial Hygienists, 1992.

    Google Scholar 

  2. Airey DK, Wong JCF, Fleming RA, A comparison of human- and headform -based measurements of solar ultraviolet B dose, Photodermatol, Photoimmunol, Photomed, 1995; 11: 155–158.

    Article  CAS  Google Scholar 

  3. American Conference of Governmental Industrial Hygienists (ACGIH) TLV’s, Threshold Limit Values and Biological Exposure Indices for 1999, Cincinnati: ACGIH, 1999.

    Google Scholar 

  4. CIE, Erythemal reference action spectrum and standard erythemal dose, CIE Standard S007-1998, Vienna: CIE, 1998; also available as ISO 17166, 1999.

    Google Scholar 

  5. CIE, Standardization of the terms UV-A1, UV-A2 and UV-B, Report CIE-134/1, Vienna: CIE, 1999.

    Google Scholar 

  6. Challoner AVJ, Corless D, Davies A, et al, Personnel monitoring of exposure to ultraviolet radiation, Clin Exp Dermatol 1976; 1:175–179.

    Article  PubMed  CAS  Google Scholar 

  7. Cogan, DG, Kinsey, VE, Action Spectrum of Keratitis Produced by Ultraviolet Radiation Arch Ophthalmol 1946; 35:617–670.

    Google Scholar 

  8. Coroneo, MT, Müller-Stolzenburg, NW Ho, A, Peripheral light focusing by the anterior eye and the ophthalmohelioses, Ophthalmic Surg 1991; 22:705–711.

    PubMed  CAS  Google Scholar 

  9. Coroneo, MT, Pterygium as an early indicator of ultraviolet insolation: an hypothesis, Brit J. Ophthalmol 1993;, 77:734–739.

    Article  CAS  Google Scholar 

  10. Davis A, Deane GHW, Diffey BL. Possible dosimeter for ultraviolet radiation. Nature 1976; 261: 169–170.

    Article  PubMed  CAS  Google Scholar 

  11. Deaver DM, Davis J and Sliney DH, Vertical visual fields-of-view in outdoor daylight, Lasers Light Ophthalmol, 1996; 7(2/3): 121–125.

    Google Scholar 

  12. Diffey BL. Ultraviolet radiation dosimetry with polysulphone film. In: Diffey, BL, ed. Radiation Measurement in Photobiology. London: Academic Press, 1989:135–139.

    Google Scholar 

  13. Diffey BL, Tate TJ, Davies A., Solar dosimetry of the face: the relationship of natural ultraviolet radiation exposure to basal cell carcinoma localisation, 1979, Phys Med Biol, 1979; 24:931–939.

    Article  PubMed  CAS  Google Scholar 

  14. Diffey BL. Kerwin M, Davies A, The anatomical distribution of sunlight, Br. J. Derm. 1977; 7:407–409.

    Article  Google Scholar 

  15. Dolin, PJ, Ultraviolet radiation and cataract: A review of the epidemiological evidence, Br J Ophthalmol, 1994; 78:478–482 and reprinted in Optometry Today Nov/Dec 1997.

    Article  PubMed  CAS  Google Scholar 

  16. Duchêne, AS, Lakey, JRA, and Repacholi, MH, IRPA Guidelines on Protection against Non-Ionizing Radiation, New York: McMillan 1991.

    Google Scholar 

  17. Gies HP, Roy CR, Toomey S, MacLennan R, Watson M, Solar UVR exposures of three groups of outdoor workers on the Sunshine Coast, Queensland, Photochem. Photobiol., 1995; 62:1015–1021.

    Article  CAS  Google Scholar 

  18. Ham, WT Jr., The photopathology and nature of the blue-light and near-UV retinal lesion produced by lasers and other optical sources In: Wolbarsht, ML, ed, Laser Applications in Medicine and Biology, New York: Plenum Publishing Corp, 1983.

    Google Scholar 

  19. Ham, WT, Mueller, HA, Ruffolo, JJ, Guerry, D III, Guerry, RK, Action spectrum for retinal injury from near ultraviolet radiation in the aphakic monkey, Am J Ophthalmol, 1982; 93(3): 299–306.

    PubMed  Google Scholar 

  20. Horneck G, Rettberg P, Rabbow E, Strauch W, Seckmeyer G, Facius R, Reitz G, Strauch K, Schott JU, Biological dosimetry of solar radiation for different simulated ozone column thickness. J. Photochem. Photobiol. B:Biol, 1996; 32:189–196.

    Article  CAS  Google Scholar 

  21. International Commission on Non-Ionizing Radiation Protection (ICNIRP), Guidelines on UV Radiation Exposure Limits, Health Physics, 1996; 71(6):978.

    Google Scholar 

  22. Klein, BEK, Klein, R, and Linton, KLP, Prevalence of age-related lens opacities in a population, the Beaver Dam Eye Study, Ophthalmology, 1992; 44(4):546–522.

    Google Scholar 

  23. Larko O, Diffey BL, Natural UV-B radiation received by people with outdoor, indoor, and mixed occupations and UV-B treatment of psoriasis. Clin Exp Dermatol, 1983; 8:279–285.

    Article  PubMed  CAS  Google Scholar 

  24. Munakata N, Kazadzis S, Bais A F, Hieda K, Rontó G, Rettberg P, Horneck G, Comparisons of spore dosimetry and spectral photometry of solar UV radiation at four sites in Japan and Europe, Photochem. Photobiol., 2000; 72:739–745.

    Article  PubMed  CAS  Google Scholar 

  25. Pitts, D.G., The human ultraviolet action spectrum Am J Optom Physiol Optics, 1974; 51(12):946–960.

    Article  CAS  Google Scholar 

  26. Pitts, DG, Cullen, AP, Hacker, PD, Ocular effects of ultraviolet radiation from 295 to 365 nm, Invest Ophthalmol Vis Sci, 1977; 16(10): 932–939.

    PubMed  CAS  Google Scholar 

  27. Quintern LE, Furusawa Y, Fukutsu K, Holtschmidt H. Characterization and application of UV detector spore films: the sensitivity curve of a new detector system provides good similarity to the action spectrum for UV-induced erythema in human skin. J Photochem Photobiol 1997; 37: 158–166.

    Article  CAS  Google Scholar 

  28. Ringvold, A, Damage to the cornea epithelium caused by ultraviolet radiation, Acta Ophthalmologica, 1983; 61:898–907.

    Article  PubMed  CAS  Google Scholar 

  29. Rontó Gy, Gáspár S, Bérces A, Phage T7 in biological UV dose measurement. J Photochem Photobiol 1992; 12: 285–294.

    Article  Google Scholar 

  30. Rontó Gy, Gáspár S, Gróf P, Bérces A, Gugolya Z. Ultraviolet dosimetry in outdoor measurements based on bacteriophage T7 as a biosensor. Photochem Photobiol 1994; 59: 209–214.

    Article  Google Scholar 

  31. Sasaki K, Sasaki H, Kojima M, Shui YB. Hockwin O, Jonasson F, Cheng HM, Ono M, Katoh N. Epidemiological studies on UV-related cataract in climatically different countries. J Epidemiol (Japan), 1999; 9:S33–S38.

    Article  Google Scholar 

  32. Sliney DH. Eye protective techniques for bright light. Ophthalmology 1983; 90(8):937–944.

    PubMed  CAS  Google Scholar 

  33. Sliney DH, Estimating the solar ultraviolet radiation exposure to an intraocular lens implant, J Cataract Refract Surg 1987; 13:296–301.

    PubMed  CAS  Google Scholar 

  34. Sliney DH, Ultraviolet radiation exposure criteria, Radiation Protection Dosimetry, 2000; 91(l–3):213–222.

    Article  CAS  Google Scholar 

  35. Sliney, DH, Physical factors in cataractogenesis: ambient ultraviolet radiation and temperature, Invest Ophthalmol Vis Sci, 1986; 27(5):781–790.

    PubMed  CAS  Google Scholar 

  36. Sliney DH, UV radiation ocular exposure dosimetry; J. Photochem. Photobiol. B: Biol 1995; 31: 69–77.

    Article  CAS  Google Scholar 

  37. Sliney, DH, Krueger, RR, Trokel, SL, Rappaport, KD, Photokeratitis from 193-nm argon-fluoride laser radiation, Photochem Photobiol 1991; 53(6):739–744.

    PubMed  CAS  Google Scholar 

  38. Sliney, DH, Geometrical gradients in the distribution of temperature and absorbed ultraviolet radiation in ocular tissues, Doc. Ophthalmol 2001 (In press).

    Google Scholar 

  39. Sliney, DH, The merits of an envelope action spectrum for ultraviolet radiation exposure criteria Amer Industr Hyg Assn J 1972; 33(10): 646–653.

    Google Scholar 

  40. Sliney, DH, and Matthes, R (Eds), The Measurement of Optical Radiation Hazards, ICNIRP Publication 6/98; CIE Publication CIE-x016–1998, ICNIRP: Munich and CIE: Vienna, 1999.

    Google Scholar 

  41. Sliney, DH, Wolbarsht, ML, Safety with Lasers and Other Optical Sources, New York: Plenum Publishing Corp, 1980.

    Google Scholar 

  42. Taylor H.R., Pterygium, Amsterdam: Kugler, 2000.

    Google Scholar 

  43. Taylor HR, West SK, Rosenthal FS, Munoz B, Newland HS, Abbey H, Emmett SK, Effect of ultraviolet radiation on cataract formation. New Engl J. Med 1989; 319:1429–1433.

    Article  Google Scholar 

  44. World Health Organization, The Effects of Solar UV Radiation on the Eye, Report of an Informal Consultation, Geneva, August — September 1993, 1995 Publication WHO/PBL/EHG/94.1, Program for the Prevention of Blindness, Geneve: World Health Organization.

    Google Scholar 

  45. World Health Organization (WHO), Environmental health Criteria No. 160, Ultraviolet Radiation, Joint Publication of the United Nations Environmental Program, The International Commission on Non-Ionizing Radiation Protection and the World Health Organization, Geneva: WHO, 1994.

    Google Scholar 

  46. Wulf, H.C., Effects of ultraviolet radiation from the sun on the Inuit population, In: Petursdottir G, Sigurdsson SB, Karlsson MM, Axelsson J, eds, Circumpolar Health’93 Arctic Medical Research 1994; 53: 416–422.

    Google Scholar 

  47. Zuclich, JA, Ultraviolet-induced photochemical damage in ocular tissues, Health Physics 1989; 56(5):671–682.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sliney, D.H. (2002). Measurement of Photobiological Exposure of Ocular Tissues. In: Holick, M.F. (eds) Biologic Effects of Light 2001. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0937-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0937-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5313-3

  • Online ISBN: 978-1-4615-0937-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics