Skip to main content

The Redox Status of Bound Pterin Cofactor Determines Whether eNOS Produces NO or Superoxide Anion: [3H]-BH4 Binding Studies Provide Insights into Vascular Pathophysiology

  • Chapter
Chemistry and Biology of Pteridines and Folates

Abstract

Nitric oxide synthases (NOSs) are a family of bioptero-flavoproteins that convert L-arginine to equimolar quantities of nitric oxide (NO) and L-citrulline. The catalytic mechanism for this reaction is complex, involving electron transfer within NOS from transiently bound NADPH, through flavins in the C-terminal reductase domain, to heme in an N-terminal oxygenase domain — electron transfer is triggered by calmodulin binding to NOS (1). During catalysis, arginine occupies the active site on the oxygenase domain and undergoes two successive heme-dependent monoxygenation reactions, with Nω-hydroxyarginine formed as an isolatable intermediate (2). Tetrahydrobiopterin (BH4) is an essential NOS cofactor (3,4), however its precise role in catalysis has not been established. Notably, one molecule of BH4 is bound in the oxygenase domain of each NOS monomer comprising the functional NOS homodimer. Recent crystal structures have revealed that BH4 binds tightly at the dimer interface of NOSs and makes multiple hydrogen bonds, including interaction with a heme propionate (5,6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bredt DS: Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res 31: 577–596. 1999

    Article  PubMed  CAS  Google Scholar 

  2. Stuehr DJ, Kwon NS, Nathan CF, et al: N omega-hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine. J Biol Chem 266: 6259–6263, 1991.

    PubMed  CAS  Google Scholar 

  3. Gross SS, Levi R: Tetrahydrobiopterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. J Biol Chem 267: 25722–25729, 1992.

    PubMed  CAS  Google Scholar 

  4. Kwon NS, Nathan CF, Stuehr DJ: Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. J Biol Chem 264: 20496–20501, 1989.

    PubMed  CAS  Google Scholar 

  5. Raman CS, Li H, Martásek P, et al: Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 95: 939–950, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Crane BR, Arvai AS, Ghosh DK, et al: Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279: 2121–2126, 1998

    Article  PubMed  CAS  Google Scholar 

  7. Munzel T, Heitzer T, Harrison DG: The physiology and pathophysiology of the nitric oxide/superoxide system. Herz 22: 158–172, 1997

    Article  PubMed  CAS  Google Scholar 

  8. Xia Y, Roman LJ, Masters BS, et al: Inducible nitric-oxide synthase generates superoxide from the reductase domain. J Biol Chem 273: 22635–22639, 1998

    Article  PubMed  CAS  Google Scholar 

  9. Pou S, Keaton L, Surichamorn W, et al: Mechanism of superoxide generation by neuronal nitric-oxide synthase. J Biol Chem 274: 9573–9580, 1999

    Article  PubMed  CAS  Google Scholar 

  10. Vásquez-Vivar, J., Hogg, N., Martásek, P., Karoui, H., Pritchard, Jr. K.A. and Kalyanaraman, B.: Tetrahydrobiopterin-dependent inhibition of superoxide generation from neuronal nitric oxide synthase. J. Biol. Chem. 274: 26736–26742, 1999

    Article  PubMed  Google Scholar 

  11. Vásquez-Vivar J, Kalyanaraman B, Martásek P, et al: Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 95: 9220–9225, 1998

    Article  PubMed  Google Scholar 

  12. Maier W, Cosentino F, Lutolf RB, et al: Tetrahydrobiopterin improves endothelial function in patients with coronary artery disease. J Cardiovasc Pharmacol 35: 173–178, 2001

    Article  Google Scholar 

  13. Heitzer T, Brockhoff C, Mayer B, et al: Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers. Circ Res 86: E36–41, 2001

    Article  Google Scholar 

  14. Martásek P, Liu Q, Liu J, et al: Characterization of bovine endothelial nitric oxide synthase expressed in E. coli. Biochem Biophys Res. Commun. 219: 359–365, 1996

    Article  PubMed  Google Scholar 

  15. List BM, Klosch B, Volker C, et al: Characterization of bovine endothelial nitric oxide synthase as a homodimer with down-regulated uncoupled NADPH oxidase activity: BH4 binding kinetics and role of haem in dimerization. Biochem J 323: 159–165, 1997

    PubMed  CAS  Google Scholar 

  16. Hevel JM, Marietta MA: Macrophage nitric oxide synthase: relationship between enzyme-bound tetrahydrobiopterin and synthase activity. Biochemistry 31: 7160–7165, 1992

    Article  PubMed  CAS  Google Scholar 

  17. Milstien S, Katusic Z: Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res. Commun. 263: 681–684, 1999

    Article  PubMed  CAS  Google Scholar 

  18. Pollock JS, Forstermann U, Mitchell JA, et al: Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine endothelial cells. Proc Natl Acad Sci USA 88: 10480–10484, 1991

    Article  PubMed  CAS  Google Scholar 

  19. Billiar TR, Curran RD, Harbrecht BG, et al: Association between synthesis and release of cGMP and nitric oxide biosynthesis by hepatocytes. Am J Physiol 262: C1077–1082, 1992

    PubMed  CAS  Google Scholar 

  20. Schmidt, P.P., Lange, R., Gorren, A.C.F., Werner, E.R., Mayer, B. and Andersson, K.K. Formation of a protonated trihydrobiopterin radical cation in the first reaction cycle of neuronal and endothelial nitric oixde synthase detected by electron paramagnetic resonance spectroscopy. J. Biol. Inorg. Chem. 6: 151–158, 2001.

    Article  PubMed  CAS  Google Scholar 

  21. Vásquez-Vivar, J., Joseph, J., Karoui, H., Zhang, H., Miller, J., Martásek, P: EPR spin trapping of superoxide from nitric oxide synthase. Analusis 28: 487–492, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sheldon Milstien Gregory Kapatos Robert A. Levine Barry Shane

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jones, C.L., Vásquez-Vivar, J., Kalyanaraman, B., Griscavage-Ennis, J.M., Gross, S.S. (2002). The Redox Status of Bound Pterin Cofactor Determines Whether eNOS Produces NO or Superoxide Anion: [3H]-BH4 Binding Studies Provide Insights into Vascular Pathophysiology. In: Milstien, S., Kapatos, G., Levine, R.A., Shane, B. (eds) Chemistry and Biology of Pteridines and Folates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0945-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0945-5_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5317-1

  • Online ISBN: 978-1-4615-0945-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics