Skip to main content

Abstract

The discussion of removal rate, surface topography, chemical composition, and structural analysis in the previous chapters has been used to develop a physically-based conceptual model for low-κ CMP. The model assumes an altered-layer surface mechanism approach to represent the CMP of BCB, SiLK, and OSG materials and provide a generic understanding of the CMP proce ss for other materials. The model also assumes a desirable low-κ CMP process where atomic-scale smoothness is achieved through an appropriate chemical-mechanical balance. The model does not account for deviations from an ideal CMP process, i.e. defect types such as scratching or peeling of the softer low-κ materials. Experimental results using SiLK polymer have been used to test and validate the basic approach and the model mechanism as an adequate representation of the complex CMP process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Sundararajan, D.G. Thakurta, D.W. Schwendeman, S.P. Murarka, W. N. Gill, J. Electrochem. Soc., 146(2), (1999).

    Google Scholar 

  2. D.G. Thakurta, C. L. Borst, D. W. Schwendeman, R.J. Gutmann, W. N. Gill, Thin Solid Films, 366, 181 (2000).

    Article  Google Scholar 

  3. D.G. Thakurta, C.L. Borst, D.W. Schwendeman, R.J. Gutmann, W.N. Gill, submitted to J. Electrochem. Soc. (2000).

    Google Scholar 

  4. D. Towery and M. Fury, J. Elect. Mac, 27(10), 1088 (1998).

    Article  Google Scholar 

  5. J.M. Smith, Chemical Engin eering Kinetics, Second Edition, New York: McGraw-Hill Book Company (1970).

    Google Scholar 

  6. V. Nguyen, H. VanKranenburg, P. Woerlee, Microelectron. Eng., 50, 403 (2000).

    Article  Google Scholar 

  7. B. Jirgensons, M.E. Straumanis, A Short Textbook of Colloid Chemistry, New York: MacMillan (1962).

    Google Scholar 

  8. J.G. Dos Ramos, C.A. Silebi, Polym. Int., 30 (1993).

    Google Scholar 

  9. C.L, Borst, D.G. Thakurta, R.I. Gutmann, W.N. Gill, J. Electrochem. Soc., 146(11), 4309 (1999).

    Article  Google Scholar 

  10. J.M. Neirynck, S. P. Murarka, R.J. Gutmann, in: T.-M. Lu, S.P. Murarka, T.-S. Kuan, and C.H. Ting, Low-Dielectric Constant Materials — Synth esis and Applications in Microelectronics, San Francisco, USA, April 17–19, 1995, Materials Research Society Symposium Proceedings, 381, 229 (1995).

    Google Scholar 

  11. J.M. Neirynck, G.-R. Yang, S.P. Murarka, R.J. Gutmann, Thin Solid Films, 290–291, 447 (1996).

    Article  Google Scholar 

  12. D. Perrnana, S. P. Murarka, M. G. Lee, S. I. Beilin in: R. Havemann, J. Schmitz, H. Komiyama, K. Tsubouchi, Advanced Metall ization and Interconnect Sys tems for ULSI Applications in 1996, Boston, USA, October 1–3, 1996, Proceedings of Advanced Metallization and Interconnect Systems for ULSI Applications in 1996, 539 (1997).

    Google Scholar 

  13. G.-R. Yang, Y.-P. Zhao, J. M. Neirynck, S. P. Murarka, R. J. Gutmann, J. Electrochern. Soc., 144(9), 3249 (1997).

    Article  Google Scholar 

  14. L. Cook, J. Non-Cryst. Solids, 120, 152 (1990).

    Article  Google Scholar 

  15. C. L. Borst, D. G. Thakurta, W. N. Gill, R. J. Gutmann, J. Electrochem. Soc., 149(2), G118 (2002).

    Article  Google Scholar 

  16. S. W. Waite, J. F. Holzwarth, J. M. Harris, Anal. Chem., 67(8), 1390 (1995).

    Article  Google Scholar 

  17. F. Y. Ren, J. M. Harris, Anal. Chem., 68(9), 1651 (1996).

    Article  Google Scholar 

  18. J. H. Penn, Z. Lin, J. Org. Chem., 55(5), 1554 (1990).

    Article  Google Scholar 

  19. R. L. Hansen, J. M. Harris, Anal. Chem., 70(20), 4247 (1998).

    Article  Google Scholar 

  20. R. J. Gutmann, C. L. Borst, B.-C. Lee, D. Thakurta, D. Duquette, W. N. Gill, 17th VMIC Conference, Santa Clara, CA, June 27–29, 123 (2000).

    Google Scholar 

  21. B. C. Lee, B. Wang, D. J. Duquette, R. J. Gutmann, 4 th Intl. Conf. on CMP Planar. (CMP-MIC) Conference, March 2–3, Santa Clara, CA (2000).

    Google Scholar 

  22. D. G. Thakurta, D.W. Schwendeman, R.J. Gutmann, S. Shankar, L. Jiang and W.N. Gill, Thin Solid Films, accepted for publication, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borst, C.L., Gill, W.N., Gutmann, R.J. (2002). Low-κ CMP Model Based on Surface Kinetics. In: Chemical-Mechanical Polishing of Low Dielectric Constant Polymers and Organosilicate Glasses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1165-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1165-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7193-5

  • Online ISBN: 978-1-4615-1165-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics