Skip to main content

Part of the book series: Medical Science Symposia Series ((MSSS,volume 18))

  • 87 Accesses

Abstract

A clofibrate inducible P450 that carries out the ω and ω-1 oxidation of fatty acids was purified from liver [1,2] and antibody derived from the purified protein was used to isolate a cDNA [1]. The “clofibrate-inducible” rat P450 was later named CYP4A1 based on the nomenclature system developed for the P450 superfamily (http://drnelson.utmem.edu/CytochromeP450.html). Two additional members of the CYP4A family were found in rats [3,4]. The CYP4A1 was the first member of a subfamily of P450s that oxidize a number of endogenous and exogenous fatty acids. Treatment of rats with clofibrate results in a rapid induction of CYP4A1 gene transcription and mRNA [2]. The mechanism of induction by clofibrate remained elusive until the discovery of the peroxisome proliferator-activated receptor (PPAR) in 1990 [5,6]. This receptor, subsequently named PPARα, is one of three members of a family in the nuclear receptor superfamily. The CYP4A1 gene was found to possess a functional binding site for PPARα [7]. Two additional members of the PPAR family were subsequently discovered and named PPARβ(δ) and PPARγ [8,9]. Only PPARα is able to induce transcription of the CYP4A P450s in liver and kidney of species that are responsive to peroxisome proliferators. The PPARs are representative of a group of nuclear receptors that require retinoid X receptor (RXR) as an obligate heterodimeric partner for activity [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gibson GG, Tavoussi M, Tamburini PP. Electrophoretically homogeneous cytochrome P-450: Influence of a series of unsaturated fatty acids on the reconstituted hydroxylase activity. Biochem Soc Trans 1981;9:58–59.

    PubMed  CAS  Google Scholar 

  2. Hardwick JP, Song BJ, Huberman E, Gonzalez FJ. Isolation, complementary DNA sequence, and regulation of rat hepatic lauric acid omega-hydroxylase (cytochrome P-450LA omega). Identification of a new cytochrome P-450 gene family. J Biol Chem 1987;262:801–10.

    PubMed  CAS  Google Scholar 

  3. Kimura S, Hanioka N, Matsunaga E, Gonzalez FJ. The rat clofibrate-inducible CYP4A gene subfamily. I. Complete intron and exon sequence of the CYP4A1 and CYP4A2 genes, unique exon organization, and identification of a conserved 19-bp upstream element. DNA 1989;8:503–16.

    Article  PubMed  CAS  Google Scholar 

  4. Kimura S, Hardwick JP, Kozak CA, Gonzalez FJ. The rat clofibrate-inducible CYP4A subfamily. II. cDNA sequence of IVA3, mapping of the Cyp4a locus to mouse chromosome 4, and coordinate and tissue-specific regulation of the CYP4A genes. DNA 1989;8:517–25.

    Article  PubMed  CAS  Google Scholar 

  5. Green S. PPAR: A mediator of peroxisome proliferator action. Mutat Res 1995;333:101–9.

    Article  PubMed  CAS  Google Scholar 

  6. Issemann I, Green S. Cloning of novel members of the steroid hormone receptor superfamily. J Steroid Biochem Mol Biol 1991;40:263–69.

    Article  PubMed  CAS  Google Scholar 

  7. Aldridge TC, Tugwood JD, Green S. Identification and characterization of DNA elements implicated in the regulation of CYP4A1 transcription. Biochem J 1995;306:473–79.

    PubMed  CAS  Google Scholar 

  8. Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 1992;68:879–87.

    Article  PubMed  CAS  Google Scholar 

  9. Kliewer SA, Forman BM, Blumberg B, et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA 1994;91:7355–59.

    Article  PubMed  CAS  Google Scholar 

  10. Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell 1995; 83:841–50.

    Article  PubMed  CAS  Google Scholar 

  11. Reddy JK, Rao MS. Peroxisome proliferation and hepatocarcinogenesis. IARC Sci Publ 1992;225–35.

    Google Scholar 

  12. de la Iglesia FA, Lewis JE, Buchanan RA, Marcus EL, McMahon G. Light and electron microscopy of liver in hyperlipoproteinemic patients under long-term gemfibrozil treatment. Atherosclerosis 1982;43:19–37.

    Article  Google Scholar 

  13. Blumcke S, Schwartzkopff W, Lobeck H, Edmondson NA, Prentice DE, Blane GF. Influence of fenofibrate on cellular and subcellular liver structure in hyperlipidemic patients. Atherosclerosis 1983;46:105–16.

    Article  PubMed  CAS  Google Scholar 

  14. Hanefeld M, Kemmer C, Kadner E. Relationship between morphological changes and lipid-lowering action of p-chlorphenoxyisobutyric acid (CPIB) on hepatic mitochondria and peroxisomes in man. Atherosclerosis 1983;46:239–46.

    Article  PubMed  CAS  Google Scholar 

  15. Gariot P, Barrat E, Drouin P, et al. Morphometric study of human hepatic cell modifications induced by fenofibrate. Metabolism 1987;36:203–10.

    Article  PubMed  CAS  Google Scholar 

  16. Lock EA, Mitchell AM, Elcombe CR. Biochemical mechanisms of induction of hepatic peroxisome proliferation. Annu Rev Pharmacol Toxicol 1989;29:145–63.

    Article  PubMed  CAS  Google Scholar 

  17. Fruchart JC, Brewer HB Jr, Leitersdorf E. Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease. Fibrate Consensus Group. Am J Cardiol 1998;81:912–17.

    Article  PubMed  CAS  Google Scholar 

  18. Choudhury AI, Chahal S, Bell AR, et al. Species differences in peroxisome proliferation; mechanisms and relevance. Mutat Res 2000;448:201–12.

    Article  PubMed  CAS  Google Scholar 

  19. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998;98:2088-93.

    Article  PubMed  CAS  Google Scholar 

  20. Sher T, Yi HF, McBride OW, Gonzalez FJ. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry 1993;32:5598–5604.

    Article  PubMed  CAS  Google Scholar 

  21. Palmer CN, Hsu MH, Griffin KJ, Raucy JL, Johnson EF. Peroxisome proliferator activated receptor-alpha expression in human liver. Mol Pharmacol 1998;53:14–22.

    PubMed  CAS  Google Scholar 

  22. Gervois P, Torra IP, Chinetti G, et al. A truncated human peroxisome proliferator-activated receptor alpha splice variant with dominant negative activity. Mol Endocrinol 1999; 13:1535–49.

    Article  PubMed  CAS  Google Scholar 

  23. Hasmall SC, James NH, Macdonald N, Soames AR, Roberts RA. Species differences in response to diethylhexylphthalate: Suppression of apoptosis, induction of DNA synthesis and peroxisome proliferator activated receptor alpha-mediated gene expression. Arch Toxicol 2000;74:85–91.

    Article  PubMed  CAS  Google Scholar 

  24. Varanasi U, Chu R, Huang Q, Castellon R, Yeldandi AV, Reddy JK. Identification of a peroxisome proliferator-responsive element upstream of the human peroxisomal fatty acyl coenzyme A oxidase gene. J Biol Chem 1996;271:2147-55.

    Article  PubMed  CAS  Google Scholar 

  25. Hsu MH, Savas U, Griffin KJ, Johnson EF. Identification of peroxisome proliferator responsive human genes by elevated expression of the peroxisome proliferator activated receptor α (PPARα) in HepG2 cells. J Biol Chem 2001;276:27950–58.

    Article  PubMed  CAS  Google Scholar 

  26. Lemberger T, Saladin R, Vazquez M, et al. Expression of the peroxisome proliferator-activated receptor α gene is stimulated by stress and follows a diurnal rhythm. J Biol Chem 1996;271:1764–69.

    Article  PubMed  CAS  Google Scholar 

  27. Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 1999;103:1489–98.

    Article  PubMed  CAS  Google Scholar 

  28. Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature 2000; 405:421–24.

    Article  PubMed  CAS  Google Scholar 

  29. Aoyama T, Peters JM, Iritani N, et al. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem 1998;273:5678–84.

    Article  PubMed  CAS  Google Scholar 

  30. Watanabe K, Fujii H, Takahashi T, et al. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem 2000;275:22293–99.

    Article  PubMed  CAS  Google Scholar 

  31. Motojima K, Passilly P, Peters JM, Gonzalez FJ, Latruffe N. Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. J Biol Chem 1998;273:16710–14.

    Article  PubMed  CAS  Google Scholar 

  32. Lee SS, Pineau T, Drago J, et al. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 1995;15:3012–22.

    PubMed  CAS  Google Scholar 

  33. Costet P, Legendre C, More J, Edgar A, Galtier P, Pineau T. Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J Biol Chem 1998;273:29577–85.

    Article  PubMed  CAS  Google Scholar 

  34. Akiyama T, Nicol CA, Fievet C, et al. Peroxisome proliferator-activated receptor-α regulates homeostasis, but is not associated with obesity: Studies with congenic mouse lines. J Biol Chem 2001;276:39088–93..

    Article  PubMed  CAS  Google Scholar 

  35. Hashimoto T, Fujita T, Usuda N, et al. Peroxisomal and mitochondrial fatty acid beta-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor alpha and peroxisomal fatty acyl-CoA oxidase. Genotype correlation with fatty liver phenotype. J Biol Chem 1999;274:19228–36.

    Article  PubMed  CAS  Google Scholar 

  36. Rao MS, Reddy JK. Hepatocarcinogenesis of peroxisome proliferators. Ann NY Acad Sci 1996;804:573–87.

    Article  PubMed  CAS  Google Scholar 

  37. Gonzalez FJ, Peters JM, Cattley RC. Mechanism of action of the nongenotoxic peroxisome proliferators: Role of the peroxisome proliferator-activator receptor alpha. J Natl Cancer Inst 1998;90:1702–9.

    Article  PubMed  CAS  Google Scholar 

  38. Yeldandi AV, Rao MS, Reddy JK. Hydrogen peroxide generation in peroxisome proliferators-induced oncogenesis. Mutat Res 2000;448:159–77.

    Article  PubMed  CAS  Google Scholar 

  39. Peters JM, Cattley RC, Gonzalez FJ. Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis 1997;18:2029–33.

    Article  PubMed  CAS  Google Scholar 

  40. Peters JM, Aoyama T, Cattley RC, Usuda M, Hashimoto T, Gonzalez FJ. Role of peroxisome proliferator-activated receptor-α in altered cell cycle regulation in mouse liver. Carcinogenesis 1998;16:1989–94.

    Article  Google Scholar 

  41. Parzefall W, Berger W, Kainzbauer E, Teufelhofer O, Schulte-Hermann R, Thurman RG. Peroxisome proliferators do not increase DNA synthesis in purified rat hepatocytes. Carcinogenesis 2001;22:519–23.

    Article  PubMed  CAS  Google Scholar 

  42. Rose ML, Rusyn I, Bojes HK, Belyea J, Cattley RC, Thurman RG. Role of Kupffer cells and oxidants in signaling peroxisome proliferator-induced hepatocyte proliferation. Mutat Res 2000;448:179–92.

    Article  PubMed  CAS  Google Scholar 

  43. Rusyn I, Yamashina S, Segal BH, et al. Oxidants from nicotinamide adenine dinucleotide phosphate oxidase are involved in triggering cell proliferation in the liver due to peroxisome proliferators. Cancer Res 2000;60:4798–4803.

    PubMed  CAS  Google Scholar 

  44. Roberts RA, James NH, Cosulich S, Hasmall SC, Orphanides G. Role of cytokines in nongenotoxic hepatocarcinogenesis: Cause or effect? Toxicol Lett 2001;120:301–6.

    Article  PubMed  CAS  Google Scholar 

  45. Rusyn I, Kadiiska MB, Dikalova A, et al. Phthalates rapidly increase production of reactive oxygen species in vivo: Role of Kupffer cells. Mol Pharmacol 2001;59:744–50.

    PubMed  CAS  Google Scholar 

  46. Peters JM, Rusyn I, Rose ML, Gonzalez FJ, Thurman RG. Peroxisome proliferator-activated receptor alpha is restricted to hepatic parenchymal cells, not Kupffer cells: implications for the mechanism of action of peroxisome proliferators in hepatocarcinogenesis. Carcinogenesis 2000;21:823–26.

    Article  PubMed  CAS  Google Scholar 

  47. Roberts RA, James NH, Hasmall SC, et al. Apoptosis and proliferation in nongenotoxic carcinogenesis: Species differences and role of PPARα. Toxicol Lett 2000; 112–113:49–57.

    Article  PubMed  Google Scholar 

  48. Cosulich SC, James NH, Needham MR, Newham PP, Bundell KR, Roberts RA. A dominant negative form of IKK2 prevents suppression of apoptosis by the peroxisome proliferator nafenopin. Carcinogenesis 2000;21:1757–60.

    Article  PubMed  CAS  Google Scholar 

  49. Hasmall SC, West DA, Olsen K, Roberts RA. Role of hepatic non-parenchymal cells in the response of rat hepatocytes to the peroxisome proliferator nafenopin in vitro. Carcinogenesis 2000;21:2159–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gonzalez, F.J. (2002). The Role of PPARα in Fatty Acid Metabolism and Hepatocarcinogenesis: Studies with PPARα-Null Mice. In: Fruchart, JC., Gotto, A.M., Paoletti, R., Staels, B., Catapano, A.L. (eds) Peroxisome Proliferator Activated Receptors: From Basic Science to Clinical Applications. Medical Science Symposia Series, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1171-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1171-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5427-7

  • Online ISBN: 978-1-4615-1171-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics