Skip to main content

Abstract

In all the FROG beam geometries we’ve just discussed, the relative delay is varied by scanning a mirror position. Because only one value of the delay can be set at a time, only one spectrum can be taken at a time. As a result, to produce a FROG trace, these methods require measuring spectra over at least as many laser pulses as the desired number of delay values. More, if we average over more than one pulse for each delay. But what if you’ve just amplified your pulse up to a Joule, and the rep rate is one pulse per hour, and you just don’t feel like waiting around for the day or two it’ll take to measure it with such a multi-shot method?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arakelian, S.A., R.N. Gyuzalian, and S.B. Sogomonian, Comments on the Picosecond Pulse Width Measurement By the Single-Shot Second Harmonic Beam Technique. Optics Communications, 1982. 44(1): p. 67–72.

    Article  ADS  Google Scholar 

  2. Bourne, O.L. and A.J. Alcock, Ultraviolet and Visible Single-Shot Autocorrelator Based on Multiphoton Ionization. Review of Scientific Instruments, 1986. 57(12): p. 2979-82.

    Article  ADS  Google Scholar 

  3. Brun, A., et al., Single-Shot Characterization of Ultrashort Light Pulses. J. Phys. D., 1991. 24: p. 1225–33.

    Article  ADS  Google Scholar 

  4. Clement, T.S., A.J. Taylor, and D.J. Kane, Single-shot measurement of the amplitude and phase of ultrashort laser pulses in the violet. Optics Letters, 1995. 20(1): p. 70–2.

    Article  ADS  Google Scholar 

  5. Fourkas, J.T., et al., Spatially-Encoded, Single-Shot Ultrafast Spectroscopies. J. Opt. Soc. of Amer. B, 1995.12(1): p. 155–65.

    Article  ADS  Google Scholar 

  6. Janszky, J. and G. Corradi, Full Intensity Profile Analysis of Ultrashort Laser Pulses Using Four-Wave Mixing or Third Harmonic Generation. Optics Communications, 1986. 60(4): p. 251–6.

    Article  ADS  Google Scholar 

  7. Kabelka, V. and A.V. Masalov, Angularly resolved autocorrelation for single-shot time-frequency imaging of ultrashort light pulse. Optics Communications, 1995.121(4–6): p. 141–8.

    Article  ADS  Google Scholar 

  8. Kane, D.J. and R. Trebino, Single-Shot Measurement of the Intensity and Phase of an Arbitrary Ultrashort Pulse By Using Frequency-Resolved Optical Gating. Opt. Lett., 1993.18(10): p. 823–5.

    Article  ADS  Google Scholar 

  9. Kane, D.J., et al., Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single shot . Journal of the Optical Society of America B (Optical Physics), 1997.14(4): p. 935–43.

    Article  ADS  Google Scholar 

  10. Le Blanc, S.P., G. Szabo, and R. Sauerbrey, Femtosecond Single-Shot Phase-Sensitive Autocorrelator for the Ultraviolet. Optics Letters, 1991.16(19): p. 1508–10.

    Article  ADS  Google Scholar 

  11. Mehendale, M., et al., Method for single-shot measurement of the carrier envelope phase of a few-cycle laser pulse. Optics Letters, 2000.25(22): p. 1672–4.

    Article  ADS  Google Scholar 

  12. Michelmann, K., et al., Frequency resolved optical gating in the UV using the electronic Kerr effect. Applied Physics B (Lasers and Optics), 1996. B63(5): p. 485–9.

    ADS  Google Scholar 

  13. Salin, F., et al., Single-Shot Measurement of a 52-fs Pulse. Applied Optics, 1987.26(21): p. 4528–31.

    Article  ADS  Google Scholar 

  14. Saltiel, S.M., K.A. Stankov, and P.D. Yankov, Realization of a Diffraction-Grating Autocorrelator for Single-Shot Measurement of Ultrashort Light Pulses Duration. Applied Physics B, 1986.40: p. 25–7.

    Article  Google Scholar 

  15. Sarukura, N., et al., Single-Shot Measurement of Subpicosecond KrF Pulse Width by Three-Photon Fluorescence of the XeF Visible Transition. Optics Letters, 1988.13(11): p. 996–8.

    Article  ADS  Google Scholar 

  16. Szatmári, S., F.P. Schafer, and J. Jethwa, A Single-Shot Autocorrelator for the Ultraviolet with a Variable Time Window. Review of Scientific Instruments, 1990. 61(3): p. 998-1003.

    Article  ADS  Google Scholar 

  17. Tien, A.C., et al., Geometrical distortions and correction algorithm in single-shot pulse measurements: application to frequency-resolved optical gating. Journal of the Optical Society of America B (Optical Physics), 1996.13(6): p. 1160–5.

    Article  ADS  Google Scholar 

  18. Tünnermann, M.H.R., et al., Single-Shot Autocorrelator for KrF Subpicosecond Pulses Based on Two-Photon Fluorescence of Cadmium Vapor at λ= 508 nm. OL, 1991.16(6): p. 402–4.

    Article  Google Scholar 

  19. Wyatt, R. and E.E. Marinero, Versatile Single-Shot Background-Free Pulse Duration Measurement Technique for Pulses of Subnanosecond to Picosecond Duration. Applied Physics, 1981. 25: p. 297–301.

    Article  ADS  Google Scholar 

  20. Kane, D. J., et al., Single-Shot Measurement of the Intensity and Phase of Femtosecond UV Laser Pulse Using Frequency-Resolved Optical Gating. Optics Letters, 1994. 19(14): p. 1061–3.

    Article  ADS  Google Scholar 

  21. Diels, J.C. and W. Rudolph, Ultrashort Laser Pulse Phenomena. 1996, San Diego: Academic Press.

    Google Scholar 

  22. Szabo, G., Z. Bor, and A. Muller, Phase-Sensitive Single-Pulse Autocorrelator for Ultrashort Laser Pulses. Optics Letters, 1988. 13(9): p. 746–8.

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trebino, R. (2000). Geometrical Issues: Single-shot FROG. In: Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1181-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1181-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5432-1

  • Online ISBN: 978-1-4615-1181-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics