Skip to main content

Molecular Genetics of Circadian Rhythms in Neurospora, a Prototypic Circadian System

  • Chapter
Circadian Clocks

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 12))

Abstract

Earlier sections of this book have established that circadian systems are complicated. With this section, we try to cut through the complexity to the basic molecular issues defining and governing circadian timing at the biochemical level. We recall the three great questions in circadian biology: (1)Input—howdo environmental signals reset the clock? (2)The oscillator—whatare the gears and cogs in the feedback loop generating time and how is the loop assembled? (3)Output—howis time information that is generated by the clock then transduced to effect changes in the behavior of the organism? Answers to all of these questions are attainable at the level of proteins, RNAs, genes, and small molecules. It is widely accepted as a tenet of circadian biology that intercellular communication plays no obligate role in the generation of circadian rhythmicity, although it is surely involved in the entrainment and expression of rhythms in multicellular organisms. Clearly the cell is the basic unit timer. Current work on prototypic cellular circadian systems promises to establish the paradigms that will govern the way we approach the molecular dissection of more complex systems in the same way that Pittendrigh’s early work on the resetting responses ofDrosophila pseudoobscuragoverned the way an entire generation thought about how to determine the formal characteristics of circadian pacemakers. Thus, model systems are of interest not only because that tell us concretely how more complex systems will work, but also because they teach us how to think about problems in more complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, S. L., & Kay, S. A. (1995). Functional dissection of circadian clock and phytochrome-regulated transcription of the Arabidopsis CAB2 gene. Proceedings of the National Academy of Sciences of the USA, 92, 1500–1504.

    Article  PubMed  CAS  Google Scholar 

  • Antoch, M., Soog, E., Chang, A., Vitaterna, M., Zhao, Y., Wilsbacher, L., Sangoram, A., King, D., Pinto, L., & Takahashi, J. (1997). Functional identification of the mouse circadian clock gene by transgenic BAC rescue. Cell, 89, 655–667.

    Article  PubMed  CAS  Google Scholar 

  • Aronson, B., Johnson, K., Loros, J. J., & Dunlap, J. C. (1994a). Negative feedback defining a circadian clock: Autoregulation in the clock gene frequency. Science, 263, 1578–1584.

    Article  PubMed  CAS  Google Scholar 

  • Aronson, B. D., Johnson, K. A., & Dunlap, J. C. (1994b). The circadian clock locus frequency: A single ORF defines period length and temperature compensation. Proceedings of the National Academy of Sciences of the USA, 91, 7683–7687.

    Article  PubMed  CAS  Google Scholar 

  • Arpaia, G., Loros, J. J., Dunlap, J. C., Morelli, G., & Macino, G. (1993). The interplay of light and the circadian clock: Independent dual regulation of clock-controlled gene ccg-2 (eas). Plant Physiology, 102, 1299–1305.

    Article  PubMed  CAS  Google Scholar 

  • Arpaia, G., Carattoli, A., & Macino, G. (1995a). Light and development regulate the expression of the albino-3 gene in Neurospora crassa. Developmental Biology, 170, 626–635.

    Article  PubMed  CAS  Google Scholar 

  • Arpaia, G., Loros, J. J., Dunlap, J. C., Morelli, G., & Macino, G. (1995b). The circadian clock-controlled gene ccg-1 is induced by light. Molecular and General Genetics, 247, 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Ballario, P., Vittorioso, P., Magrelli, A., Talora, C., Cabibbo, A., & Macino, G. (1996). White collar-1, a central regulator of blue-light responses in Neurospora crassa, is a zinc-finger protein. EMBO journal, 15,1650–1657.

    PubMed  CAS  Google Scholar 

  • Beadle, G. W., & Tatum, E. L. (1945). Neurospora II. Methods of producing and detecting mutations concerned with nutritional requirements. American journal of Botany, 32, 678–686.

    Article  Google Scholar 

  • Bell-Pedersen, D., Dunlap, J. C., & Loros, J. J. (1996a). Distinct cis-acting elements mediate clock, light, and developmental regulation of the Neurospora crassa eas (cg-2) gene. Molecular and Cellular Biology, 16, 513–521.

    PubMed  CAS  Google Scholar 

  • Bell-Pedersen, D., Shinohara, M., Loros, J., & Dunlap, J. C. (1996b). Circadian clock-controlled genes isolated from Neurospora crassa are late night to early morning specific. Proceedings of the National Academy of Sciences of the USA, 93, 13096–13101.

    Article  PubMed  CAS  Google Scholar 

  • Bell-Pedersen, D., Dunlap, J. C., & Loros, J. J. (1992). The Neurospora circadian clock-controlled gene, ccg 2, is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer, Genes & Dev. 6, 2382–2394.

    Article  CAS  Google Scholar 

  • Crosthwaite, S. C., Loros, J. J., & Dunlap, J. C. (1995). Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell, 81, 1003–1012.

    Article  PubMed  CAS  Google Scholar 

  • Crosthwaite, S. C., Dunlap, J. C., & Loros, J. J. (1997). Neurospora we-1 and we-2: Transcription, photo-responses, and the origins of circadian rhythmicity. Science, 276, 763–769.

    Article  PubMed  CAS  Google Scholar 

  • Denault, D. L., Loros, J. J., and Dunlap, J. C. WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora crassa, EMBO journal. In press.

    Google Scholar 

  • Dharmananda, S. (1980). Studies of the circadian clock of Neurospora crassa: Light-induced phase shifting. Ph.D. dissertation, University of California, Santa Cruz, California.

    Google Scholar 

  • D’Souza, T., & Dryer, S. (1996). A cationic channel regulated by a vertebrate intrinsic circadian oscillator. Nature, 382, 165–167.

    Article  PubMed  Google Scholar 

  • Dunlap, J. C. (1993). Genetic analysis of circadian clocks. Annual Review of Physiology, 55, 683–728.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap, J. C. (1996). Genetic and molecular analysis of circadian rhythms. Annual Review of Genetics, 30, 579–601.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap, J C (1999). Molecular bases for circadian clocks, Cell 96, 271–290.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, J. F. (1982). Genetic approaches to circadian clocks. Annual Review of Plant Physiology, 33, 583–608.

    Article  CAS  Google Scholar 

  • Feldman, J. F., & Dunlap, J. C. (1983). Neurospora crassa: A unique system for studying circadian rhythms. Photochemistry and Photobiology Review, 7, 319–368.

    Article  CAS  Google Scholar 

  • Feldman, J. F., Gardner, G. F., & Dennison, R. A. (1979). Genetic analysis of the circadian clock of Neurospora. In M. Suda (Ed.), Biological rhythms and their central mechanism (pp. 57–66). Amsterdam: Elsevier.

    Google Scholar 

  • Garceau, N. (1996). Molecular and genetic studies on the frq and ccg-1 loci of Neurospora. Ph.D. dissertation, Dartmouth College, Hanover, New Hampshire.

    Google Scholar 

  • Garceau, N., Liu, Y., Loros, J. J., & Dunlap, J. C. (1997). Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein Frequency. Cell, 89, 469–476.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J. (1997). Circadian pacemakers blowing hot & cold—But they’re clocks, not thermometers. Cell, 90, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, M. (1995). Circadian rhythms: Peering into the molecular clockwork. Journal of Neuroendocrinology, 7, 331–340.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Z. J., Edery, I., & Rosbash, M. (1993). PAS is a dimerization domain common to Drosophila Period and several transcription factors. Nature, 364, 259–262.

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki, H., and Dunlap, J. C. (2000). Microbial circadian oscillatory systems in Neurospora and Synechococcus: models for cellular clocks, Currrent Opinions in Microbiology, 3, 189–196.

    Article  CAS  Google Scholar 

  • King, D., Zhao, Y., Sangoram, A., Wilsbacher, L., Tanaka, M., Antoch, M., Steeves, T., Vitaterna, M., Kornhauser, J., Lowrey, P., Turek, F., Sc Takahashi, J. (1997). Positional cloning of the mouse circadian clock gene. Cell, 89, 641–653.

    Article  PubMed  CAS  Google Scholar 

  • Lagarias, D. M., Shu-Hsing, W., & Lagarias, J. C. (1995). Atypical phytochrome gene structure in the green alga Mesotaenium caldariorum. Plant Molecular Biology, 29, 1127–1142.

    Article  PubMed  CAS  Google Scholar 

  • Lakin-Thomas, P., Coté, G., & Brody, S. (1990). Circadian rhythms in Neurospora. CRC Critical Reviews in Microbiology, 17, 365–416.

    Article  PubMed  CAS  Google Scholar 

  • Lauter, F. R., & Yanofsky, C. (1993). Day/night and circadian rhythm control of con gene expression in Neurospora. Proceedings of the National Academy of Sciences of the USA, 90, 8249–8253.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K., Loros, J. J., and Dunlap, J. C. (2000). Interconnected feedback loops in the Neurospora circadiansystem, Science, 289, 107–110.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, M. T., & Feldman, J. F. (1993). The putative frq clock protein of Neurospora crassa contains sequence elements that suggest a nuclear transcriptional regulatory role. Protein Sequences and Data Analysis, 5, 315–323.

    CAS  Google Scholar 

  • Lewis, M., & Feldman, J. E (1997). Evolution of the frequency clock locus in ascomycete fungi. Molecular Biology and Evolution, 13, 1233–1241.

    Article  Google Scholar 

  • Lewis, M., Morgan, L., & Feldman, J. F. (1997). Cloning of (frq) clock gene homologs from the Neurospora sitophila and Neurospora tetrasperma, Chromocrea spinulosa and Leptosphaeria australiensis. Molecular and General Genetics, 253, 401–414.

    Article  PubMed  CAS  Google Scholar 

  • Linden, H., & Macino, G. (1997). White collar-2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO Journal, 16, 98–109.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Garceau, N., Loros, J. J., & Dunlap, J. C. (1997). Thermally regulated translational control mediates an aspect of temperature compensation in the Neurospora circadian clock. Cell, 89, 477–486.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Merrow, M., Loros, J. J., and Dunlap, J. C. (1998). How temperature changes reset a circadian oscillator, Science, 281, 825–829.

    Article  PubMed  CAS  Google Scholar 

  • Loros, J. (1995). The molecular basis of the Neurospora clock. Seminars in Neuroscience, 7, 3–13.

    Article  CAS  Google Scholar 

  • Loros, J., & Dunlap, J. C. (1991). Neurospora crassa clock-controlled genes are regulated at the level of transcription. Molecular and Cellular Biology, 11, 558–563.

    PubMed  CAS  Google Scholar 

  • Loros, J. J., and Dunlap, J. C. (2001). Genetic and molecular analysis of circadian rhythms in Neurospora, Annual Reviews of Physiology, 63, 757–794.

    Article  CAS  Google Scholar 

  • Loros, J. J., Denome, S. A., & Dunlap, J. C. (1989). Molecular cloning of genes under the control of the circadian clock in Neurospora. Science, 243, 385–388.

    Article  PubMed  CAS  Google Scholar 

  • Luo, C., Loros, J. J., & Dunlap, J. C. (1998). Nuclear localization is required for function of the essential clock protein Frequency. EMBO Journal, 17, 1228–1235.

    Article  PubMed  CAS  Google Scholar 

  • Merrow, M., & Dunlap, J. C. (1994). Intergeneric complementation of a circadian rhythmicity defect: Phylogenetic conservation of the 989 amino acid open reading frame in the clock gene frequency. EMBO Journal, 13, 2257–2266.

    PubMed  CAS  Google Scholar 

  • Merrow, M., Garceau, N., & Dunlap, J. C. (1997). Dissection of a circadian oscillation into discrete domains. Proceedings of the National Academy of Sciences of the USA, 94, 3877–3882.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, L., & Feldman, J. (1997). Isolation and characterization of a temperature-sensitive circadian clock mutant in Neurospora crassa. Genetics, 146, 525–530.

    PubMed  CAS  Google Scholar 

  • Nakashima, H. (1981). A liquid culture system for the biochemical analysis of the circadian clock of Neurospora. Plant and Cell Physiology, 22, 231–238.

    CAS  Google Scholar 

  • Paietta, J., & Sargent, M. (1981). Riboflavin mutants are blind. Proceedings of the National Academy of Sciences of the USA, 78, 5573–5577.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh, C. S. (1976). Circadian clocks: What are they? In J. W. Hastings & H.-G. Schweiger (Eds.), The molecular basis of circadian rhythms (pp. 11–48). Berlin: Abakon.

    Google Scholar 

  • Pittendrigh, C. S. (1993). Temporal organization: Reflections of a Darwinian clock-watcher. Annual Review of Physiology, 55, 17–54.

    Article  Google Scholar 

  • Pittendrigh, C. S., Bruce, V. G., Rosenzweig, N. S., & Rubin, M. L. (1959). A biological clock in Neurospora. Nature, 184, 169–170.

    Article  Google Scholar 

  • Quail, P., Boylan, M. T., Parks, B. M., Short, T. W., Xu, Y., & Wagner, D. (1995). Phytochromes: photosensory perception and signal transduction. Science, 268, 675–680.

    Article  PubMed  CAS  Google Scholar 

  • Reppert, S., & Weaver, D. R. (1997). Forward genetic approach strikes gold: Cloning of mammalian clock gene. Cell, 89, 487–490.

    Article  PubMed  CAS  Google Scholar 

  • Shigeyoshi, Y., Taguchi, IC, Yamamoto, S, Takeida, S., Yan, L., Tei, H., Moriya, S, Shibata, S., Loros, J. J., Dunlap, J. C., and Okamura, H. (1997). Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPerl transcript, Cell, 91, 1043–1053.

    Article  PubMed  CAS  Google Scholar 

  • Shinohara, M., Loros, J. J., & Dunlap, J. C. (1998). Glyceraldehyds-3-phosphate dehydrogenase is regulated on a daily basis by the circadian clock. Journal of Biological Chemistry, 273, 446–452.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dunlap, J.C., Loros, J.J. (2001). Molecular Genetics of Circadian Rhythms in Neurospora, a Prototypic Circadian System. In: Takahashi, J.S., Turek, F.W., Moore, R.Y. (eds) Circadian Clocks. Handbook of Behavioral Neurobiology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1201-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1201-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5438-3

  • Online ISBN: 978-1-4615-1201-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics