Skip to main content

Recent Insights into the Role of Tumor Necrosis Factor in the Failing Heart

  • Chapter
The Role of Inflammatory Mediators in the Failing Heart

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 236))

Abstract

Recent clinical and experimental studies have identified the importance of ‘neurohormones’ as biological mediators and/or modifiers of left ventricular remodeling and disease progression in the failing heart. This insight has, in turn, provided the rationale basis for antagonizing the activation of neurohormonal systems (e.g. the renin angiotensin system and the adrenergic system) in the setting of heart failure. In addition to neurohormones, it has become apparent that another portfolio of biologically active molecules, termed cytokines, are expressed along with the neurohormones in the setting of heart failure. The current interest in understanding the role or pro-inflammatory cytokines, such as tumor necrosis factor (TNF), in heart failure relates to the observation that many aspects of the syndrome of heart failure can be explained by the (Table 1). Simply stated, when expressed at sufficiently high concentrations, TNF mimics some aspects of the so-called heart failure phenotype, including (but not limited to) progressive left ventricular (LV) dysfunction, pulmonary edema, LV remodeling, fetal gene expression and cardiomyopathy. Thus the elaboration of TNF, much like the elaboration of neurohormones, may represent a biological mechanism that is responsible for producing symptoms in patients with heart failure. In the present discussion, we will review several important areas that are directly relevant to the role of TNF as a mediator of disease progression in the failing heart, including a brief overview of the biology of TNF, followed by a discussion of the deleterious effects of TNF on LV remodeling effects, and finally a review of the clinical studies that link TNF production to disease progression in heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carswell EA, Old LJ, Kassel RL, et al. An endotoxininduced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1975;72:3666–3670.

    Article  PubMed  CAS  Google Scholar 

  2. Old L.T. Tumor necrosis factor (TNF). Science 1985;230:630–632.

    Article  PubMed  CAS  Google Scholar 

  3. Yokoyama T, Nakano M, Bednarczyk JL, et al. Tumor necrosis factor-a provokes a hypertrophic growth response in adult cardiac myocytes. Circulation 1997;95:1247–1252.

    Article  PubMed  CAS  Google Scholar 

  4. Yokoyama T, Vaca L, Rossen RD, et al. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 1993;92:2303–2312.

    Article  PubMed  CAS  Google Scholar 

  5. Gulick TS, Chung MK, Pieper SJ, et al. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte ß-adrenergic responsiveness. Proc Natl Acad Sci USA 1989;86:6753–6757.

    Article  PubMed  CAS  Google Scholar 

  6. Giroir BP, Johnson JH, Brown T, et al. The tissue distribution of tumor necrosis factor biosynthesis during endotoxemia. J Clin Invest 1992;90:693–698.

    Article  PubMed  CAS  Google Scholar 

  7. Kapadia S, Lee JR, Torre-Amione G, et al. Tumor necrosis factor gene and protein expression in adult feline myocardium after endotoxin administration. J Clin Invest 1995;96:1042–1052.

    Article  PubMed  CAS  Google Scholar 

  8. Kapadia S, Oral H, Lee J, et al. Hemodynamic regulation of tumor necrosis factor-a gene and protein expression in adult feline myocardium. Circ Res 1997;81:187–195.

    Article  PubMed  CAS  Google Scholar 

  9. Torre-Amione G, Kapadia S, Lee J, et al. Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 1995;92:1487–1493.

    Article  PubMed  CAS  Google Scholar 

  10. Torre-Amione G, Kapadia S, Lee J, et al. Tumor necrosis factor-a and tumor necrosis factor receptors in the failing human heart. Circulation 1996;93:704–711.

    Article  PubMed  CAS  Google Scholar 

  11. Krown KA, Yasui K, Brooker MJ, et al. TNFa receptor expression in rat cardiac myocytes: TNFa inhibition of L-type Cat+ current and Cat+ transients. FEBS Lett 1995;376:24–30.

    Article  PubMed  CAS  Google Scholar 

  12. Oral H, Dorn GW, II, Mann DL. Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-a in the adult mammalian cardiac myocyte. J Biol Chem 1997;272:4836–4842.

    Article  PubMed  CAS  Google Scholar 

  13. Krown KA, Page MT, Nguyen C, et al. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes: involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 1996;98:2854–2865.

    Article  PubMed  CAS  Google Scholar 

  14. Nakano M, Knowlton AA, Dibbs Z, et al. Tumor necrosis factor-a confers resistance to injury induced by hypoxic injury in the adult mammalian cardiac myocyte. Circulation 1998;97:1392–1400.

    Article  PubMed  CAS  Google Scholar 

  15. Linzbach AJ. Heart Failure from the Point of View of Quantitative Anatomy. Am J Cardiol 1960;69:370–382.

    Article  Google Scholar 

  16. Cohn JN. Structural basis for heart failure: Ventricular remodeling and its pharmacological inhibition. Circulation 1995;91:2504–2507.

    Article  PubMed  CAS  Google Scholar 

  17. Kubota T, McTiernan CF, Frye CS, et al. Dilated cardiomyopathy in transgenic mice with cardiac specific overexpression of tumor necrosis factor-alpha. Cire Res 1997;81:627–635.

    Article  CAS  Google Scholar 

  18. Kubota T, Bounoutas GS, Miyagishima M, et al. Soluble tumor necrosis factor receptor abrogates myocardial inflammation but not hypertrophy in cytokine-induced cardiomyopathy. Circulation 2000; 101(21):2518–2525.

    Article  PubMed  CAS  Google Scholar 

  19. Bozkurt B, Kribbs S, Clubb Jr FJ, et al. Patho physiologically relevant concentrations of tumor necrosis factor-a promote progressive left ventricular dysfunction and remodeling in rats. Circulation 1998; 97:1382–1391.

    Article  PubMed  CAS  Google Scholar 

  20. Mann DL. Cytokines as mediators of disease progression in the failing heart. In: Hosenpud JD, Greenberg BH, eds. Congestive Heart Failure. Philadelphia: Lippincott Williams & Wilkins, 1999:213–232.

    Google Scholar 

  21. Semp H, Peterson J, Tavernier J, et al. Multiple effects of tumor necrosis factor on lipoprotein lipase in vivo. J Biol Chem 1987;262:8390–8394.

    Google Scholar 

  22. Begum N, Ragolia L. Effect of tumor necrosis factor-a on insulin action in cultured rat skeletal muscle cells. Endocrinology 1996;137:2441–2446.

    Article  PubMed  CAS  Google Scholar 

  23. Peraldi P, Hotamisligil GS, Buurman WA, et al. Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase.J Biol Chem1996; 271:13018–13022.

    Article  PubMed  CAS  Google Scholar 

  24. Lang CH, Dobrescu C, Bagby GJ. Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology 1992;130:43–52.

    Article  PubMed  CAS  Google Scholar 

  25. Kjekshus J, Mjos O. Effects of free fatty acids on myocardial function and metabolism in the ischemic dog heart. J Clin Invest 1994;51:1767–1776.

    Article  Google Scholar 

  26. Suffredini AF, Fromm RE, Parker MM, et al. The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 1989; 321:280–287.

    Article  PubMed  CAS  Google Scholar 

  27. Pagani FD, Basker LS, Hsi C, et al. Left ventricular systolic and diastolic dysfunction after infusion of tumor necrosis factor-a in conscious dogs. J Clin Invest 1992;90:389–398.

    Article  PubMed  CAS  Google Scholar 

  28. Bryant D, Becker L, Richardson J, et al. Cardiac Failure in transgenic mice with myocardial expression of tumor necrosis factor-a (TNF). Circulation 1998; 97:1375–1381.

    Article  PubMed  CAS  Google Scholar 

  29. Sciavolino PJ, Lee TH, Vilcek J. Interferon-ß induces metalloproteinase mRNA expression in human fibroblasts. J Biol Chem 1994;269:21627–21634.

    PubMed  CAS  Google Scholar 

  30. Van der Zee E, Everts V, Beertsen W. Cytokines modulate routes of collagen breakdown: review with special emphasis of collagen degradation in the periodontium and the burst hypothesis of periodontal disease progression. J Clin Periodontol 1997; 24:297–305.

    Article  PubMed  Google Scholar 

  31. Rawdanowicz TJ, Hampton AL, Nagase H, et al. Matrix metalloproteinase production by cultured human endometrial stromal cells: identification of interstitial collagenase, gelatinase-A, genatinase-B, and stromelysin-1 and their differential regulation by interleukin-la and their differential regulation by interleukin-la and tumor necrosis factor-a. J Clin Endocrinol Metab 1994;79:530–536.

    Article  PubMed  CAS  Google Scholar 

  32. Weber KT, Pick R, Janicki JS, et al. Inadequate collagen tethers in dilated cardiopathy. Am Heart J 1998;116:1641–1646.

    Article  Google Scholar 

  33. Factor SM, Robinson TF. Comparative connective tissue structure: function relationships in biological pumps. Lab Invest 1988;58:150–156.

    PubMed  CAS  Google Scholar 

  34. Weber KT. Cardiac Intersitium in Health and Disease: The Fibrillar Collagen Networks. J Am Coll Cardiol 1989;13(7):1637–1652.

    Article  Google Scholar 

  35. Levine B, Kalman J, Mayer L, et al. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990;223:236–241.

    Article  Google Scholar 

  36. McMurray J, Abdullah I, Dargie HJ, et al. Increased concentrations of tumor necrosis factor in ’cachetic’ patients with severe chronic heart failure. Br Heart J 1991;66:356–358.

    Article  PubMed  CAS  Google Scholar 

  37. Anker SD, Ponikowski P, Varney S, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet 1997;349:1050–1053.

    Article  PubMed  CAS  Google Scholar 

  38. Torre-Amione G, Kapadia S, Benedict CR, et al. Pro-inflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol 1996;27:1201–1206.

    Article  PubMed  CAS  Google Scholar 

  39. Testa M, Yeh M, Lee P, et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol 1996;28:964–971.

    Article  PubMed  CAS  Google Scholar 

  40. Bachetti T, Comini L, Agnoletti L, et al. Attivazione e ruolo del fattore di necrosi tumorale alfa nello scompenso cardiaco congestizio. Cardiologia 1996;41:343–347.

    PubMed  CAS  Google Scholar 

  41. Doyama K, Fujiwara H, Fukumoto M, et al. Tumour necrosis factor is expressed in cardiac tissues of patients with heart failure. Int J Cardiol 1996; 54(3):217–225.

    Article  PubMed  CAS  Google Scholar 

  42. Habib FM, Springall DR, Davies GJ, et al. Tumour necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy. Lancet 1996;347:1151–1155.

    Article  PubMed  CAS  Google Scholar 

  43. Bozkurt B, Torre-Amione G, Deswal A, Soran OZ, Whitmore J, Warren M, Mann DL. Regression of left ventricular remodeling in chronic heart failure after treatment with enbrel (Etanercept, p75 TNF receptor Fc fusion protein). Circulation 100:I, 105. 1999. Ref Type: Generic.

    Google Scholar 

  44. Katz SD, Rao R, Berman JW, et al. Pathophysiological correlates of increased serum tumor necrosis factor in patients with congestive heart failure: relation to nitric oxide-dependent vasodilation in the forearm circulation. Circulation 1994;90:12–16.

    Article  PubMed  CAS  Google Scholar 

  45. Ferrari R, Bachetti T, Confortini R, et al. Tumor necrosis factor soluble receptors in patients with various degrees of congestive failure. Circulation 1995;92:1479–1486.

    Article  PubMed  CAS  Google Scholar 

  46. Anker SD, Volterrnani M, Egerer KR, et al. TNF-a as predictor of peak leg blood flow in chronic heart failure. Q J Med 1998;91:199–203.

    Article  CAS  Google Scholar 

  47. Matsumori A, Yamada T, Suzuki H, et al. Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br Heart J 1994;72;561–566.

    Article  PubMed  CAS  Google Scholar 

  48. Sindhwani R, Yuen J, Hirsch H, Tegguy A, Galvao M, Levato P, LeJemtel TH. Reversal of low flow state attenuates immune activation in severe decompensated congestive heart failure. Circulation 1993; 88:1–255.

    Google Scholar 

  49. Tsutamoto T, Hisanaga T, Wada A, et al. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 1998;31:391–398.

    Article  PubMed  CAS  Google Scholar 

  50. Niebauer J, Volk H-D, Kemp M, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 99 Á.D.;353:1838–1842.

    Google Scholar 

  51. Dibbs Z, Thornby J, White BG, et al. Natural Variability of Circulating Levels of Cytokines and Cytokine Receptors in Patients with Heart Failure: Implications for Clinical Trials. J Am Coll Cardiol 1999; 33:1935–1942.

    Article  PubMed  CAS  Google Scholar 

  52. Oddis CV, Simmons RL, Hattler BG, et al. cAMP enhances inducible nitric oxide synthase mRNA stability in cardiac myocytes. Am J Physiol 1995;269:H2044–H2050.

    PubMed  CAS  Google Scholar 

  53. Murray DR, Prabhu SD, Chandrasekar B. Chronic beta-adrenergic stimulation induces myocardial proinflammatory cytokine expression. Circulation 2000;101(20):2338–2341.

    Article  PubMed  CAS  Google Scholar 

  54. Prabhu SD, Chandrasekar B, Murray DR, et al. Beta-adrenergic blockade in developing heart failure: effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation 2000; 101(17):2103–2109.

    Article  PubMed  CAS  Google Scholar 

  55. Kapadia S, Dibbs Z, Kurrelmeyer K, et al. The role of cytokines in the failing human heart. In: Crawford M, ed. Cardiology Clinics. Philadelphia: W.B. Saunders, 1998:645–656.

    Google Scholar 

  56. Nakano M, Knowlton AA, Yokoyama T, et al. Tumor necrosis factor-a induced expression of heat shock protein 72 in adult feline cardiac myocytes. Am J Ph ysi of 1996; 270:H1231—H1239.

    Google Scholar 

  57. Kurrelmeyer K, Michael L, Baumgarte G, et al. Endogenous myocardial tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a mutine model of acute myocardial infarction. Proc Natl Acad Sci USA 2000;290:5456–5461.

    Article  Google Scholar 

  58. Seta Y, Shan K, Bozkurt B, et al. Basic mechanisms in heart failure: the cytokine hypothesis. J Cardiac Failure 1996;2:243–249.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mann, D.L. (2001). Recent Insights into the Role of Tumor Necrosis Factor in the Failing Heart. In: Mann, D.L. (eds) The Role of Inflammatory Mediators in the Failing Heart. Developments in Cardiovascular Medicine, vol 236. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1449-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1449-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5559-5

  • Online ISBN: 978-1-4615-1449-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics