Skip to main content

On the Computational Modeling of Human Vision

  • Chapter
Foundations of Image Understanding

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 628))

  • 538 Accesses

Abstract

The effectiveness of biological vision may be due to its use of multiple information sources, multiple representations, and multiple processes. The role of these factors in human vision is examined, with particular attention to lightness perception, visual segregation, and the perception of transparency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. H. Adelson. Lightness perception and lightness illusions. In M. Gazzaniga, editor, The Cognitive Neurosciences, pages 339–351. MIT Press, Cambridge, MA, 2000.

    Google Scholar 

  2. E. H. Adelson and J. A. Movshon. Phenomenal coherence of moving visual patterns. Nature, 300:523–525, 1982.

    Article  Google Scholar 

  3. Y. Aloimonos, C. Fermüller, and A. Rosenfeld. Seeing and understanding: Representing the visual world. ACM Computing Surveys, 27:307–309, 1995.

    Article  Google Scholar 

  4. Y. Aloimonos and A. Rosenfeld. Computer vision. Science, 253:1249–1254, 1991.

    Article  Google Scholar 

  5. N. S. Anderson, S. M. Pine, and A. Rosenfeld. Derived scales for degree of simultaneous contrast in six Benussi ring figures. Perception and Psychophysics, 6:289–292, 1975.

    Google Scholar 

  6. F. Attneave. Praegnanz and soap bubble systems: A theoretical exploration. In J. Beck, editor, Organization and Representation in Perception, pages 11–29. Lawrence Erlbaum Associates, Hillsdale, NJ, 1982.

    Google Scholar 

  7. J. Beck. Stimulus correlates for the judged illumination of a surface. Journal of Experimental Psychology, 58:267–274, 1959.

    Article  Google Scholar 

  8. J. Beck. Judgments of surface illumination and lightness. Journal of Experimental Psychology, 61:368–375, 1961.

    Article  Google Scholar 

  9. J. Beck. Supplementary report: An examination of an aspect of the Gelb effect. Journal of Experimental Psychology, 64:199–200, 1962.

    Article  Google Scholar 

  10. J. Beck. Effect of orientation and of shape similarity on perceptual grouping. Perception and Psychophysics, 1:300–302, 1966.

    Google Scholar 

  11. J. Beck. Lightness and orientation. American Journal of Psychology, 82:359–366, 1969.

    Article  Google Scholar 

  12. J. Beck. Surface lightness and cues for the illumination. American Journal of Psychology, 84:1–11, 1971.

    Article  Google Scholar 

  13. J. Beck. Surface Color Perception. Cornell University Press, Ithaca, NY, 1972.

    Google Scholar 

  14. J. Beck. Dimensions of an achromatic surface color. In R. B. MacLeod and H. L. Pick, editors, Perception: Essays in Honor of J. J. Gibson, pages 166–184. Cornell University Press, Ithaca, NY, 1974.

    Google Scholar 

  15. J. Beck. Textural segmentation. In J. Beck, editor, Organization and Representation in Perception, pages 285–317. Lawrence Erlbaum Associates, Hillsdale, NJ, 1982.

    Google Scholar 

  16. J. Beck. Textural segmentation, second-order statistics, and textural elements. Biological Cybernetics, 48:125–130, 1983.

    Article  Google Scholar 

  17. J. Beck. Visual processing in texture segregation. In D. Brogan, A. Gale, and Carr K., editors, Visual Search 2, pages 1–35. Taylor and Francis, London, 1993.

    Google Scholar 

  18. J. Beck, A. Eisner, and C. Silver stein. Position uncertainty and the perception of apparent movement. Perception and Psychophysics, 21:33–38, 1977.

    Article  Google Scholar 

  19. J. Beck and W. Goodwin. Prevailing lightness and hue and perceived texture segregation. In G. Carpenter and S. Grossberg, editors, Neural Networks for Vision and Image Processing, pages 15–43. MIT Press, Cambridge, MA, 1992.

    Google Scholar 

  20. J. Beck, N. Graham, and A. Sutter. Lightness differences and the perceived segregation of regions and populations. Perception and Psychophysics, 49:257–269, 1991.

    Article  Google Scholar 

  21. J. Beck and R. Ivry. On the role of figurai organization in perceptual transparency. Perception and Psychophysics, 44:585–594, 1988.

    Article  Google Scholar 

  22. J. Beck, K. Prazdny, and R. Ivry. The perception of transparency with achromatic colors. Perception and Psychophysics, 35:407–422, 1984.

    Article  Google Scholar 

  23. J. Beck, K. Prazdny, and A. Rosenfeld. A theory of textural segmentation. In J. Beck, B. Hope, and A. Rosenfeld, editors, Human and Machine Vision, pages 1–38. Academic Press, New York, 1983.

    Google Scholar 

  24. J. Beck, A. Rosenfeld, and R. Ivry. Line segregation. Spatial Vision, 4:75–101, 1989.

    Article  Google Scholar 

  25. J. Beck, A. Sutter, and R. Ivry. Spatial frequency channels and perceptual grouping in texture segregation. Computer Vision, Graphics, and Image Processing, 37:299–325, 1987.

    Article  Google Scholar 

  26. J. Bergen. Theories of visual texture perception. In D. M. Regan, editor, Spatial Vision, volume 10 of Vision and Visual Dysfunction, pages 114–134. Macmillan, New York, 1991.

    Google Scholar 

  27. J. Bergen and M. Landy. Computational modeling of visual texture segregation. In M. Landy and J. Movshon, editors, Computational models of visual processing, pages 253–271. MIT Press, Cambridge, MA, 1991.

    Google Scholar 

  28. P. W. Berman and H. W. Leibowitz. Some effects of contour on simultaneous brightness contrast. Journal of Experimental Psychology, 69:251–256, 1965.

    Article  Google Scholar 

  29. O. J. Braddick. A short range process in apparent motion. Vision Research, 14:519–528, 1974.

    Article  Google Scholar 

  30. J. Braun. On the detection of salient contours. Spatial Vision, 12:211–225, 1999.

    Article  Google Scholar 

  31. S. M. Courtney, L. H. Finkel, and G. Buchsbaum. Network simulations of retinal and cortical contributions to color constancy. Vision Research, 35:413–434, 1995.

    Article  Google Scholar 

  32. M. R. Dawson and C. D. Piercey. Open peer commentary: Better theories are needed to distinguish perception from cognition. Behavioral and Brain Sciences, 22:374–375, 1999.

    Article  Google Scholar 

  33. M. R. W. Dawson and R. D. Wright. The consistency of element transformations affects the visibility but not the direction of the illusory motion. Spatial Vision, 4:17–29, 1989.

    Article  Google Scholar 

  34. G. Fechner. Elements of Psychophysics. Holt, Rinehart, and Winston, New York, 1966. Translated by H. E. Adler, D. H. Howes, and E. G. Boring.

    Google Scholar 

  35. D. J. Field, A. Hayes, and R. F. Hess. Contour integration by the human visual system—Evidence for a local association field. Vision Research, 33:173–193, 1993.

    Article  Google Scholar 

  36. H. R. Flock. Toward a theory of brightness contrast. In M. H. Appley, editor, Adaptation-Level Theory: A Symposium, pages 129–146. Academic Press, New York, 1971.

    Google Scholar 

  37. H.R. Flock and S. Nusinowitz. Specularity, brightness, achromatic color-and orthogonality. Perception and Psychophysics, 42:439–456, 1987.

    Article  Google Scholar 

  38. I. Fogel and D. Sagi. Gabor filters as texture discriminators. Biological Cybernetics, 61:103–113, 1989.

    Article  Google Scholar 

  39. W. T. Freeman. The generic viewpoint assumption in a framework for visual perception. Nature, 368:542–545, 1994.

    Article  Google Scholar 

  40. A. Gelb. Die “Farbenkonstanz” der Sehdinge. In W. A. Bethe, editor, Handbuch der Normalen und Pathologischen Physiologie, volume 12, pages 594–678. Springer, Berlin, 1929.

    Chapter  Google Scholar 

  41. J. J. Gibson. The Perception of the Visual World. Houghton Mifflin, Boston, 1950.

    Google Scholar 

  42. J. J. Gibson. Perception as a function of stimulation. In S. Koch, editor, Psychology: A Study of Science, volume 1, pages 456–501. McGraw-Hill, New York, 1959.

    Google Scholar 

  43. J. J. Gibson. The Ecological Approach to Visual Perception. Houghton Mifflin, Boston, 1979.

    Google Scholar 

  44. A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou. An anchoring theory of lightness perception. Journal of Experimental Psychology, 106:795–834, 1999.

    Google Scholar 

  45. N. Graham, J. Beck, and A. Sutter. Nonlinear processes in spatial-frequency channel models of perceived texture segregation: Effects of sign and amount of contrast. Vision Research, 32:719–743, 1992.

    Article  Google Scholar 

  46. N. Graham and D. C. Hood. Modeling the dynamics of light adaptation: The merging of two traditions. Vision Research, 32:1373–1393, 1992.

    Article  Google Scholar 

  47. N. Graham and A. Sutter. Spatial summation in simple (Fourier) and complex (non-Fourier) texture channels. Vision Research, 38:231–257, 1998.

    Article  Google Scholar 

  48. S. Grossberg. The complementary brain: A unifying view of brain specialization and modularity. Trends in Cognitive Science, 2000. In press.

    Google Scholar 

  49. S. Grossberg and E. Mingolla. Neural dynamics of form perception: Boundary completion, illusory figures, and neon color spreading. Psychological Review, 92:173–211, 1985.

    Article  Google Scholar 

  50. S. Grossberg and E. Mingolla. Neural dynamics of perceptual grouping: Texture boundaries and emergent segmentations. Perception and Psychophysics, 38:141–171, 1985.

    Article  Google Scholar 

  51. S. Grossberg and D. Todorovic. Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena. Perception and Psychophysics, 43:241–277, 1988.

    Article  Google Scholar 

  52. A. M. Haffenden and Y. M. Goodale. The effect of pictorial illusion on prehension and perception. Journal of Cognitive Neuroscience, 10:122–136, 1998.

    Article  Google Scholar 

  53. H. Helmholtz. Physiological Optics. Optical Society of America, Rochester, NY, 1925. Translated and edited by J. P. C. Southall.

    Google Scholar 

  54. H. Helson. Fundamental problems in color vision I. The principles governing changes in hue, saturation, lightness of non-selective samples in chromatic illumination. Journal of Experimental Psychology, 23:439–476, 1938.

    Article  Google Scholar 

  55. E. Hering. Outlines of a Theory of the Light Sense. Harvard University Press, Cambridge, MA, 1964. Translated by L. M. Hurvich and D. Jameson.

    Google Scholar 

  56. J. Hochberg. How big is a stimulus? In J. Beck, editor, Organization and Representation in Perception, pages 191–217. Lawrence Erlbaum Associates, Hillsdale, NJ, 1982.

    Google Scholar 

  57. J. Hochberg. Gestalt theory and its legacy. In J. Hochberg, editor, Perception and Cognition at Century’s End, pages 253–306. Academic Press, New York, 1999.

    Google Scholar 

  58. B. K. P. Horn. Determining lightness from an image. Computer Vision, Graphics and Image Processing, 3:277–299, 1974.

    Article  Google Scholar 

  59. A. Hurlbert. Formal connections between lightness algorithms. Journal of the Optical Society of America A, 3:1684–1693, 1986.

    Article  Google Scholar 

  60. L. Hurvich and D. Jameson. An opponent process theory of color vision. Psychological Review, 64:384–404, 1957.

    Article  Google Scholar 

  61. R. Jasinschi, A. Rosenfeld, and K. Sumi. Perceptual motion transparency: The role of geometrical information. Journal of the Optical Society of America A, 9:1865–1879, 1992.

    Article  Google Scholar 

  62. E. Jones and J. Bruner. Expectancy in apparent visual movement. British Journal of Psychology, 45:157–165, 1954.

    Google Scholar 

  63. D. B. Judd. The definition of black and white. American Journal of Psychology, 30:289-294, 1941.

    Article  Google Scholar 

  64. D. B. Judd. Comment. In M. H. Appley, editor, Adaptation-Level Theory: A Symposium, pages 147–156. Academic Press, New York, 1971.

    Google Scholar 

  65. G. Kanizsa. Perception, past experience, and the “impossible experiment”. Acta Psychologica, 31:66–96, 1969.

    Article  Google Scholar 

  66. G. Kanizsa. Phenomenal transparency. In G. Kanizsa, editor, Organization in Vision, pages 151–169. Praeger, New York, 1982.

    Google Scholar 

  67. L. Kardos. Ding und Schatten. Zeitschrift für Psychologie— Erganzungband, 23, 1934.

    Google Scholar 

  68. J. H. Kass. Why does the brain have so many visual areas? Journal of Cognitive Neuroscience, 1:121–135, 1989.

    Article  Google Scholar 

  69. P. J. Kellman and T. F. Shipley. A theory of visual interpolation in object perception. Cognitive Psychology, 23:141–221, 1991.

    Article  Google Scholar 

  70. F. Kelly. Neural dynamics of 3-D surface perception: Figure-ground separation, transparency and binocular brightness perception. PhD thesis, Boston University, Boston, MA, 1999.

    Google Scholar 

  71. D. Knill and D. Kersten. Apparent surface curvature affects lightness perception. Nature, 351:228–230, 1991.

    Article  Google Scholar 

  72. K. Koffka. Principles of Gestalt Psychology. Harcourt Brace, New York, 1935.

    Google Scholar 

  73. J. Krauskopf. Effects of retinal image stabilization on the appearance of heterochromatic targets. Journal of the Optical Society of America, 53:741–744, 1963.

    Article  Google Scholar 

  74. E. H. Land. Color vision and the natural image. III. Recent advances in the retinex theory and some implications for cortical computations. Proceedings of the National Academy of Sciences U.S.A., 80:5163–5169, 1983.

    Article  Google Scholar 

  75. J. Lorenceau and M. Shiffrar. The influence of terminators on motion integration across space. Vision Research, 32:263–273, 1992.

    Article  Google Scholar 

  76. E. Mach. The Analysis of Sensations. Dover, New York, 1959. Translated by S. Waterlow.

    Google Scholar 

  77. I. D. G. MacLeod and A. Rosenfeld. The visibility of gratings: Spatial frequency channels or bar-detecting units? Vision Research, 14:909–915, 1974.

    Article  Google Scholar 

  78. J. Malik and P. Perona. Preattentive texture discrimination with early vision mechanism. Journal of the Optical Society of America A, 2:923–932, 1990.

    Article  Google Scholar 

  79. S. C. Masin and M. Fukuda. The occurrence of achromatic transparency. Bulletin of the Psychonomic Society, 31:537–540, 1993.

    Google Scholar 

  80. M. K. McBeath, K. Morikawa, and M. K. Kaiser. Perceptual bias for forward-facing motion. Psychological Science, 3:362–367, 1992.

    Article  Google Scholar 

  81. D. H. Mershon and W. C. Gogel. Effect of stereoscopic cues on perceived whiteness. American Journal of Psychology, 83:55–67, 1970.

    Article  Google Scholar 

  82. F. Metelli. Achromatic color conditions for the perception of transparency. In R. B. MacLeod and H. L. Pick, editors, Perception: Essays in Honor of J. J. Gibson, pages 95–116. Cornell University Press, Ithaca, NY, 1974.

    Google Scholar 

  83. A. D. Milner and Y. M. Goodale. The Visual Brain in Action. Oxford University Press, Oxford, England, 1995.

    Google Scholar 

  84. E. Mingolla, J. T. Todd, and J. F. Norman. The perception of globally coherent motion. Vision Research, 32:1015–1031, 1992.

    Article  Google Scholar 

  85. L. Moravec and J. Beck. Amodal completion: Simplicity is not the explanation. Bulletin of the Psychonomic Society, 24:269–272, 1986.

    Google Scholar 

  86. S. Oddo, J. Beck, and E. Mingolla. Texture segregation in chromatic element arrangement patterns. Spatial Vision, 12:421–459, 1999.

    Article  Google Scholar 

  87. C. E. Osgood. Method and Theory in Experimental Psychology. Oxford University Press, New York, 1953.

    Google Scholar 

  88. S. E. Palmer. Vision Science. MIT Press, Cambridge, MA, 1999.

    Google Scholar 

  89. M. A. Peterson and B. S. Gibson. Object recognition contributions to figure-ground organization: Operations on outlines and subjective contours. Perception and Psychophysics, 56:551–564, 1994.

    Article  Google Scholar 

  90. Z. Pizlo, A. Rosenfeld, and J. Epelboim. An exponential pyramid model of the time course of size processing. Vision Research, 35:1089–1107, 1995.

    Article  Google Scholar 

  91. T. Poggio, V. Torre, and C. Koch. Computational vision and regulariztion theory. Nature, 317:314–319, 1985.

    Article  Google Scholar 

  92. Z. Pylyshyn. Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences, 22:341–423, 1999.

    Google Scholar 

  93. A. Rosenfeld. Non-purposive perception in computer vision. In T. Einsele, W. Giloi, and H. H. Nagel, editors, Fachtagung “Cognitive Verfahren und Systeme”, pages 349–373. Springer, New York, 1973.

    Google Scholar 

  94. A. Rosenfeld. Relaxation processes for perceptual disambiguation in computer vision. In J. Beck, editor, Organization and Representation in Perception, pages 145–150. Lawrence Erlbaum Associates, Hillsdale, NJ, 1982.

    Google Scholar 

  95. A. Rosenfeld. Pyramid algorithms for perceptual organization. Behavior Research Methods, Instruments and Computers, 18:595–600, 1986.

    Article  Google Scholar 

  96. A. Rosenfeld. Recognizing unexpected objects: A proposed approach. International Journal of Pattern Recognition and Artificial Intelligence, 1:71–84, 1987.

    Article  Google Scholar 

  97. A. Rosenfeld. Computer vision: A source of models for biological visual processes? IEEE Transactions on Biomedical Engineering, 36:93–96, 1989.

    Article  Google Scholar 

  98. A. Rosenfeld. Pyramid algorithms for efficient vision. In C. Blakemore, editor, Vision: Coding and Efficiency, pages 423–430. Cambridge University Press, Cambridge, England, 1990.

    Google Scholar 

  99. A. Rosenfeld. Open peer commentary: Is visual recognition entirely impenetrable? Behavioral and Brain Sciences, 22:391–392, 1999.

    Article  Google Scholar 

  100. A. Rosenfeld. Vision: Some speculations. In C. H. Chen, L. F. Pau, and P. S. P. Wang, editors, Handbook of Pattern Recognition and Computer Vision, pages ix–xi. World Scientific, Singapore, 1999.

    Google Scholar 

  101. J. A. Schirillo and S. K. Shevell. An account of brightness in complex scenes based on inferred illumination. Perception, 26:507–518, 1997.

    Article  Google Scholar 

  102. A. Shashua and S. Ullman. Structural saliency. In Proceedings of the International Conference on Computer Vision, pages 482–488, Tampa, Florida, 1988.

    Google Scholar 

  103. M. Shiffrar and J. J. Freyd. Apparent motion of the human body. Psychological Science, 1:257–264, 1990.

    Article  Google Scholar 

  104. A. Sutter, J. Beck, and N. Graham. Contrast and spatial variables in texture segregation: Testing a simple spatial-frequency channels model. Perception and Psychophysics, 46:312–332, 1989.

    Article  Google Scholar 

  105. D. Todorovic. Lightness and junctions. Perception, 26:379–394, 1997.

    Article  Google Scholar 

  106. M. R. Turner. Texture discrimination by Gabor functions. Biological Cybernetics, 55:71–82, 1986.

    Google Scholar 

  107. L. Viswanathan. Neural dynamics of attention in depth and motion integration and segmentation within apertures. PhD thesis, Boston University, Boston, MA, 2000.

    Google Scholar 

  108. H. Wallach. Brightness constancy and the nature of achromatic colors. Journal of Experimental Psychology, 38:310–324, 1948.

    Article  Google Scholar 

  109. J. Walraven, C. Enroth-Cugell, D. C. Hood, D. I. A. MacLeod, and J. L. Schnapf. The control of visual sensitivity. In L. Spillman and J. S. Werner, editors, Visual Perception: The Neurophysiological Foundations, pages 53–101. Academic Press, New York, 1990.

    Google Scholar 

  110. A. B. Watson. Detection and recognition of simple spatial forms. In O. J. Braddick and A. C. Sleigh, editors, Physiological and Biological Preprocessing of Images, pages 110–114. Springer, New York, 1983.

    Google Scholar 

  111. C. Wheatstone. Contributions to the physiology of vision. Part I: On some remarkable and hitherto unobserved phenomena of binocular vision. Philosophical Transactions, Royal Society, London, 128:371–394, 1838.

    Article  Google Scholar 

  112. M. White. A new effect of pattern on perceived lightness. Perception, 8:413–416, 1979.

    Article  Google Scholar 

  113. S. Zucker. The diversity of perceptual grouping. In M. A. Arbib and A. R. Hanson, editors, Vision, Brain, and Cooperative Computation, pages 231–261. MIT Press, Cambridge, MA, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beck, J. (2001). On the Computational Modeling of Human Vision. In: Davis, L.S. (eds) Foundations of Image Understanding. The Springer International Series in Engineering and Computer Science, vol 628. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1529-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1529-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5599-1

  • Online ISBN: 978-1-4615-1529-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics