Skip to main content

Part of the book series: Developments in Hematology and Immunology ((DIHI,volume 36))

  • 89 Accesses

Abstract

The original concept of blood component therapy involved separating a standard unit (approximately 450 mL) of whole blood into red cells, plasma, and platelets in order to store each component under ideal conditions and to make the different components of whole blood available for different kinds of patients. This revolutionized transfusion therapy. However, the number and kind of components that can be prepared are limited by the volume and composition of the whole blood collected. The next advance in the production of blood components and blood component therapy was the development of blood cell separators and apheresis. This made it possible to process a larger volume of donor blood and selectively remove one component to produce a much larger blood component from an individual donor. Developments in science and technology are now making it possible to produce new, even more

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sobocinski KA, Horowitz MM, Rowlings PA, et al. Bone marrow transplantation--1994: A report from the International Bone Marrow Transplant Registry and the North American Autologous Bone Marrow Transplant Registry.JHematotherapy 1994;3:95–102.

    Article  CAS  Google Scholar 

  2. McCulloughJ.The new generation of blood components. Transfusion 1995;35:374–77.

    Article  PubMed  CAS  Google Scholar 

  3. McCullough J, Lasky LC, Warkentin PI. Role of the blood bank in bone marrow transplantation, in Advances in Immunobiology: Blood Cell Antigens and Bone Marrow Transplantation, New York, Alan R. Liss, Inc., 1984:379–412.

    Google Scholar 

  4. Hillyer CE, Lackey DA, Hart KK, et al. CD34+ progenitors and colony-forming units--granulocyte macrophage are recruited during large-volume leukapheresis and concentrated by counterflow centrifugal elutriation. Transfusion 1993;33:316–21.

    Article  PubMed  CAS  Google Scholar 

  5. Snyder EL, Baril L, MinK,et al. In vitro collection and posttransfusion engraftment characteristics of MNCs obtained using a new separator for autologous PBPC transplantation. Transfusion 2000; 40:961–67.

    Article  PubMed  CAS  Google Scholar 

  6. Stroncek DF, Clay ME, Petzoldt ML, et al. Treatment of normal individuals with granulocyte-colony-stimulating factor: donor experiences and the effects on peripheral blood CD34+ cell counts and on the collection of peripheral blood stem cells. Transfusion 1996;36:601–10.

    Article  PubMed  CAS  Google Scholar 

  7. Stroncek DF, Clay ME, Herr G, et al. The kinetics of G-CSF mobilization of CD34+ cells in healthy people. Transf Med 1997;7:19–24.

    Article  CAS  Google Scholar 

  8. AnderliniP,Przepiorka D, Champlin R, Korbling M. Biologic and clinical effects of granulocyte colony-stimulating factor in normal individuals. Blood 1996;88:2819–25.

    PubMed  CAS  Google Scholar 

  9. Lane TA, Law P, Maruyama M, et al. Harvesting and enrichment of hematopoietic progenitor cells mobilized into the peripheral blood of normal donors by granulocyte-macrophage colony-stimulating factor (GM-CSF) or G-CSF: potential role in allogeneic marrow transplantation. Blood 1995;85:275–82.

    PubMed  CAS  Google Scholar 

  10. Pettengell R, Morgenstern GR, Woll PJ, et al. Peripheral blood progenitor cell transplantation in lymphoma and leukemia using a single apheresis. Transfusion 1993; 82:3770–77.

    CAS  Google Scholar 

  11. Emerson SG. Ex vivo expansion of hematopoietic precursors, progenitors, and stem cells: the next generation of cellular therapeutics. Blood 1996;87:3082–88.

    PubMed  CAS  Google Scholar 

  12. Koller MR, Emerson SG, Palsson BO. Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. Blood 1993;82:378–84.

    PubMed  CAS  Google Scholar 

  13. Haylock DN, To LB, Dowse TL, Juttner CA, Simmons PJ. Ex vivo expansion and maturation of peripheral blood CD34+ cells into the myeloid lineage. Blood 1992; 80:1405–12.

    PubMed  CAS  Google Scholar 

  14. Lee WJ, Loudovaris MF, Oiao X, et al. Large scale selection of CD34+ cells and expansion of neutrophil precursors in PIXY321 for clinical application. Blood 1994; 84; 542a (abstract).

    Google Scholar 

  15. Muench MO, Firpo MT, Moore MAS. Bone marrow transplantation with interleukin1 plus kit-ligand ex vivo expanding bone marrow accelerates hematopoietic reconstitution in mice without the loss of stem cell lineage and proliferative potential. Blood 1993;81:3463–73.

    PubMed  CAS  Google Scholar 

  16. Williams S, Lee W, Bender JG, et al. Selection and expansion of peripheral blood CD34+ cells in autologous stem cell transplantation for breast cancer. Blood 1996; 86:1687–91.

    Google Scholar 

  17. Porter D, Roth M, McGarigle C, Ferrara J, Antin J. Adoptive immunotherapy induces molecular remission in relapsed CML following allogeneic bone marrow transplantation (BMT). Proc Am Soc Clin Oncol 1993;12:303.

    Google Scholar 

  18. Kolb HJ, Mittermuller J, Clemm CH. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplatn patients. Blood 1990;76; 2462–65.

    PubMed  CAS  Google Scholar 

  19. Drobyski WR, Keever CA, Roth MS, et al. Salvage immunotherapy using donor leukocyte infusions as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation: Efficacy and toxicity of a defined T cell dose. Blood 1993; 82:2310–18.

    PubMed  CAS  Google Scholar 

  20. van Rhee F, Lin F, Cullis JO, et al. Relapse of chronic myeloid leukemia after allogeneic bone marrow transplant: The case for giving donor leukocyte transfusions before the onset of hematologic relapse. Blood 1994;83:3377–83.

    PubMed  CAS  Google Scholar 

  21. Childs R, Chernoff A, Contentin N, et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med 2000;343:750–58.

    Article  PubMed  CAS  Google Scholar 

  22. Rosenberg SA. Gene therapy for cancer. JAMA 1992;268; 2416–19.

    Article  PubMed  CAS  Google Scholar 

  23. Mitropoulos D, Kooi S, Rodriguez-Villanueva J, et al. Characterization of fresh (uncultured) tumor-infiltrating lymphocytes (TIL) and TIL-derived T cell lines from patients with renal cell carcinoma. Clin Exp Immunol 1994;97:321–27.

    Article  PubMed  CAS  Google Scholar 

  24. Goedegebuure PS, Douville LM, Li H, et al. Adoptive immunotherapy with tumor-infiltrating lymphocytes and interleukin-2 in patients with metastic malignant melanoma and renal cell carcinoma: a pilot study. J Clin Oncol 1995; 3:1939–49.

    Google Scholar 

  25. Belldegrun A, Pierce W, Kaboo R, et al. Interferon-a primed tumor-infiltrating lymphocytes combined with interleukin-2 and interferon-a as therapy for metastatic renal cell carcinoma. Urol 1993;150:1384–90.

    CAS  Google Scholar 

  26. Falkenberg JHF, Wafelman AR, Joosten P, et al. Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood 1999;94:1201–08.

    Google Scholar 

  27. Troy AJ, Hart DNJ. Dendritic cells and cancer: progress toward a new cellular therapy. J Hematotherapy 1997;6:523–33.

    Article  CAS  Google Scholar 

  28. Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996;2:52–58.

    Article  PubMed  CAS  Google Scholar 

  29. Murphy G, Tjoa B, Ragde H, et al. Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen. Prostate 1996;29:371–80.

    Article  PubMed  CAS  Google Scholar 

  30. Nestle FO, Gilliet M, Alljagic S, et al. Vaccination of melanoma patients with peptide-pulsed dendritic cells. Melanoma Res 1997;7:S 14.

    Article  Google Scholar 

  31. Mayordoma JI, Zorina T, Storkus WJ, et al. Bone marrow-derived dendritic cells pulsed with synthetic tumor peptides elicit protective and therapeutic antitumor immunity. Nat Med 1995;1:1297–302.

    Article  Google Scholar 

  32. Karanikas V, Hwang L, Pearson J, et al. Antibody and T cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J Clin Invest 1997;100:2783–92.

    Article  PubMed  CAS  Google Scholar 

  33. Choudhury A, Gajewski JL, Liang J, et al. Use of leukemic dendritic cells for the generation of antileukemic cellular cytotoxicity against Philadelphia chromosome-positive chronic myelogenous leukemia. Blood 1997;89;1133–42.

    PubMed  CAS  Google Scholar 

  34. Walter EA, Greenberg PD, Gilbert MJ. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995;333:1038–44.

    Article  PubMed  CAS  Google Scholar 

  35. Papadopoulos EB, Ladanyi M, Emanuel D, et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 1994;330:1185–91.

    Article  PubMed  CAS  Google Scholar 

  36. Subklewe M, Chahroudi A, Schmalijohn A, Kurilla M, Bhardwaj N, Steinman RM. Induction of Epstein-Barr virus-specific cytotoxic T-lymphocyte responses using dendritic cells pulsed with EBNA-3A peptides or UV-inactivated, recombinant EBNA-3A vaccinia virus. Blood 1999;94:1372–81.

    PubMed  CAS  Google Scholar 

  37. Blaese RM, Anderson WF, Culver KW. The ADA human gene therapy clinical protocol. Hum Gene Ther 1990;1:327–62.

    Article  Google Scholar 

  38. Stroncek DF, Hubel A, Shankar RA, et al. Retroviral transduction and expansion of peripheral blood lymphocytes for the treatment of mucopolysaccharidosis II, Hunter syndrome. Transfusion 1999;39:343–50.

    Article  PubMed  CAS  Google Scholar 

  39. Cohen JL, Boyer O, Salomon B, et al. Prevention of graft-versus-host disease in mice using a suicide gene expressed in T lymphocytes. Blood 1997;89:4636–45.

    PubMed  CAS  Google Scholar 

  40. Kessler DA, Siegel JP, Noguchi PD, Zoon KC, Feiden KL, Woodcock J. Regulation of somatic-cell therapy and gene therapy by the Food and Drug Administration. N Engl J Med 1993; 329:1169–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McCullough, J. (2001). Development and Implementation of New Cellular Therapies. In: Sibinga, C.T.S., Cash, J.D. (eds) Transfusion Medicine: Quo Vadis? What Has Been Achieved, What Is to Be Expected. Developments in Hematology and Immunology, vol 36. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1735-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1735-1_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5700-1

  • Online ISBN: 978-1-4615-1735-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics