Skip to main content

Human Procathepsin D: Three-Dimensional Model and Isolation

  • Chapter
Aspartic Proteinases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 362))

Abstract

Human procathepsin D was isolated from medium of human breast cancer cell line ZR-75-1 potentiated with estrogen. The isolation involved both immunoaffinity chromatography and ion-exchange chromatography. The affinity chromatography employed polyclonal antibodies raised against a synthetic activation peptide of human cathepsin D. We have started preliminary crystallization trials using the isolated material. A model of human procathepsin D was also built using coordinates of human cathepsin D and pig pepsinogen. The model aids understanding of multiple roles played by activation peptides of aspartic proteinases and will be used as a starting model for molecular replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barret, A.J. (1970) Biochem. J. 117, 601–607.

    Google Scholar 

  2. Factorovich, Y. and Puri, J. (1988) J. Immunol. 141, 3313–3317.

    PubMed  Google Scholar 

  3. Whitaker, J.N. and Seyer, J.M. (1979) J. Biol. Chem. 254, 6956–6963.

    PubMed  CAS  Google Scholar 

  4. Rochefort, H. (1992) Acta Oncol. 31, 125–130

    Article  PubMed  CAS  Google Scholar 

  5. Kornfeld, S. and Mellman, I. (1989) Annu. Rev. Cell Biol. 5, 483–525.

    Article  PubMed  CAS  Google Scholar 

  6. Hasilik, A. (1992) Experentia 48, 130–151.

    Article  CAS  Google Scholar 

  7. Diement, S., Leech, M.S. and Stahl, P.D. (1988) J. Biol. Chem. 263, 6901–6907.

    Google Scholar 

  8. McIntyre, G.F. and Erickson, A.H. (1991) J. Biol. Chem. 266, 15438–15445.

    PubMed  CAS  Google Scholar 

  9. Rijnbout, S., Aerts, H.M.F.G., Geuze, H.J., Tager, J.M. and Strous, G.J. (1992) J. Biol. Chem. 266, 4862–4868.

    Google Scholar 

  10. Wiliams, K.P. and Smith, J.A. (1993) Arch. Biochem. Biophys. 305, 298–306.

    Article  Google Scholar 

  11. Kornfeld, S. (1987) FASEB J. 1, 462–468.

    PubMed  CAS  Google Scholar 

  12. Metcalf, P. and Fusek M. (1993) EMBO J. 12, 1293–1302.

    PubMed  CAS  Google Scholar 

  13. Hartsuck, J.A., Koesch, G. and Remington, S.J. (1992) Proteins: Structure, Function and Genetics 13, 1–25.

    Article  CAS  Google Scholar 

  14. Remington, S.J. and Matthews, B.W. (1980) J. Mol. Biol. 140, 77–99.

    Article  PubMed  CAS  Google Scholar 

  15. Yonezawa, S., Takahashi, T., Wang, X-J., Wong, R.N.S., Hartsuck, J.A. and Tang, J. (1988) J. Biol. Chem. 263, 16504–16511.

    PubMed  CAS  Google Scholar 

  16. Jones, T.A. (1978) J. Appl. Crystallogr. 11,268–272.

    Article  CAS  Google Scholar 

  17. Brunger, A.T., Kuriyan, J. and Karpulus, M. (1987) Science 235, 458–460.

    Article  PubMed  CAS  Google Scholar 

  18. Lee, B. and Richards, F.M. (1979) J. Mol. Biol. 55, 379–400.

    Article  Google Scholar 

  19. Barlow, D.J. and Thornton, J.M. (1983) J. Mol. Biol. 168,867–885

    Article  PubMed  CAS  Google Scholar 

  20. Vetvicka, V., Vagner, J., Baudys, M., Tang, J., Foundling, I. S. and Fusek, M., (1993) Biochem. Mol. Biol. Int. 30, 921–928.

    PubMed  CAS  Google Scholar 

  21. Foltman, B. (1988) Biol. Chem. Hoppe-Seyler 369 Suppl., 311–314.

    Google Scholar 

  22. van den Hazel, H. B., Kielland-Brandt, M. C. and Winther, J. R. (1993) J. Biol. Chem. 268, 18002–18007

    PubMed  Google Scholar 

  23. Klionsky, D. J., Banta, L. M. and Emr, S. D. (1988) Mol. Cell. Biol. 8, 2105–2116.

    PubMed  CAS  Google Scholar 

  24. Moore, S., Sielecki, A., Tarasive, N., Chernaia, M., Andreeva, N. and James, M., in this issue.

    Google Scholar 

  25. Genetics Computer Group (1991), 575 Science Drive, Madison, Wisconsin, USA 53711.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koelsch, G., Metcalf, P., Vetvicka, V., Fusek, M. (1995). Human Procathepsin D: Three-Dimensional Model and Isolation. In: Takahashi, K. (eds) Aspartic Proteinases. Advances in Experimental Medicine and Biology, vol 362. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1871-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1871-6_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5761-2

  • Online ISBN: 978-1-4615-1871-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics