Skip to main content

An Integrated Model of the Mammalian Muscle Spindle

  • Chapter
Alpha and Gamma Motor Systems

Abstract

A large number of experiments on mammalian muscle spindles, typically based on some combination of stimulation of dynamic and/or static gamma efferents with imposed length variations, have illustrated a range of functional properties and characterised muscle spindles as specialised mechanoreceptors (reviewed by Matthews, 1972; Hunt, 1990). A number of theories have been formulated to explain various aspects of experimental observations in terms of likely receptor mechanisms, which span a range from mechanical to ionic processes. Similar concepts have been applied in the analysis of other mechanoreceptors (Teorell, 1971). In most cases some combination of mechanical and ionic processes appears to give the most satisfactory general description of receptor behaviour. It can therefore be expected, that the same should apply for muscle spindles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banks, R. W., Hulliger, M., Scheepstra, K. A. & Otten, E. (1995) Pacemaker competition and the role of preterminal-branch tree architecture: a combined morphological, physiological and modelling study. (this volume).

    Google Scholar 

  • Boyd, I. A. (1985) Muscle spindles and stretch reflexes. In Scientific Basis of Clinical Neurology. eds. Swash, M. & Kennard, C., pp. 74–97. Churchill Livingstone, London.

    Google Scholar 

  • Crowe, A. & Matthews, P. B. C. (1964) Further studies of static and dynamic fusimotor fibres. J. Physiol. 174, 109–131.

    PubMed  CAS  Google Scholar 

  • Eagles, J. P. & Purple, R. L. (1974) Afferent fibers with multiple encoding sites. Brain Res. 77, 187–193.

    Article  PubMed  CAS  Google Scholar 

  • Hasan, Z. (1983) A model of spindle afferent response to muscle stretch. J. Neurophysiol. 49, 989–1006.

    PubMed  CAS  Google Scholar 

  • Hulliger, M. & Noth, J. (1979) Static and dynamic fusimotor interaction and the possibility of multiple pace-makers operating in the cat muscle spindle. Brain Res. 173, 21–28.

    Article  PubMed  CAS  Google Scholar 

  • Hulliger, M., Otten, E., Wang, B. & Tabet, M. S. (1992) On the nature of the γd-induced slow decay of cat spindle la firing following stretch. In Muscle Afferents and Spinal Control of Movement. eds. Jami, L., Pierrot-Deseilligny, E. & Zytnicki, D., pp. 63–69. Pergamon, Oxford.

    Google Scholar 

  • Hunt, C. C. (1990) Mammalian muscle spindle: peripheral mechanisms. Physiol. Rev. 70, 643–663.

    PubMed  CAS  Google Scholar 

  • Hunt, C. C. & Wilkinson, R. S. (1980) An analysis of receptor potential and tension of isolated cat muscle spindles in response to sinusoidal stretch. J. Physiol. 302, 241–262.

    PubMed  CAS  Google Scholar 

  • Matthews, P. B. C. (1972) Mammalian Muscle Receptors and their Central Actions. Arnold, London.

    Google Scholar 

  • Matthews, P. B. C. (1981) Evolving views on the internal operation and functional role of the muscle spindle. J. Physiol. 320, 1–30.

    PubMed  CAS  Google Scholar 

  • Otten, E., Hulliger, M. & Scheepstra, K. A. (1995). A model study on the influence of a slowly activating potassium conductance on repetitive firing patterns of muscle spindle primary endings. J. Theoretical Biol. (in press).

    Google Scholar 

  • Poppele, R. E. & Quick, D. C. (1981) Stretch-induced contraction of intrafusal muscle in cat muscle spindle. J Neurosci. 1, 1069–1074.

    PubMed  CAS  Google Scholar 

  • Rudjord, T. (1970) A second order mechanical model of muscle spindle primary endings. Kybernetik 6, 205–213.

    Article  PubMed  CAS  Google Scholar 

  • Schaafsma, A., Otten, E. & van Willigen, J. D. (1991) A muscle spindle model for primary afferent firing based on a simulation of intrafusal mechanical events. J. Neurophysiol. 65, 1297–1312.

    PubMed  CAS  Google Scholar 

  • Teorell, T. (1971) A biophysical analysis of mechano-electrical transduction. In Handbook of Sensory Physiology, Volume 1, ed. Loewenstein, W. R., pp. 291–339. Springer, Berlin.

    Google Scholar 

  • Westbury, D. R. (1985) Evidence for the importance of calcium activated potassium conductance in frog muscle spindle sensory endings. In The Muscle Spindle. eds. Boyd, I. A. & Gladden, M. H., pp 359–363. Macmillan, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Otten, E., Scheepstra, K.A., Hulliger, M. (1995). An Integrated Model of the Mammalian Muscle Spindle. In: Taylor, A., Gladden, M.H., Durbaba, R. (eds) Alpha and Gamma Motor Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1935-5_63

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1935-5_63

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5793-3

  • Online ISBN: 978-1-4615-1935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics