Skip to main content

Mouse Strain Differences in in vivo and in vitro Immunosuppressive Effects of Opioids

  • Chapter
The Brain Immune Axis and Substance Abuse

Abstract

We have previously demonstrated that subcutaneous (s.c.) implantation of a 75-mg morphine pellet in a variety of mouse strains (including C3HeB/FeJ, C3H/HeJ, C57BL/6ByJ, C57BL/6J bgJ/bgJ and C57BL/6J bgJ/+ [Beige homozygous and heterologous mice]) suppresses the primary in vitro plaque-forming cell (PFC) response to sheep red blood cells (SRBCs), when spleen cells are harvested 48 hours after drug administration (1, 2). Involvement of opioid receptors in the immunosuppression is shown by two observations: (i) simultaneous implantation of a naltrexone pellet blocks the morphine-induced immunosuppression in C3H lineage mice, and (ii) morphine does not suppress the CXBK/By mouse strain, which is deficient in μ opioid receptors (1). While this evidence clearly supports the involvement of classical opioid receptors in C3H lineage mice, these in vivo studies cannot rule out a role for the hypothalamic-pituitary-adrenal (HPA) axis or for other mediators from other systems participating in the observed immunosuppression (3–5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bussiere, J.L., Adler, M.W., Rogers, T.J., & Eisenstein, T.K. (1992). Differential effects of morphine and naltrexone on the antibody response in various mouse strains. Immunopharmacol. Immunotoxicol. 14. 657–673.

    Article  PubMed  CAS  Google Scholar 

  2. Bussiere, J.L., Adler, M.W., Rogers, T.J., & Eisenstein, T.K. (1992) Effects of in vivo morphine treatment on antibody responses in C57BL/6 bgJ/bgJ (beige) mice. Life Sci. 52, 43–48.

    Google Scholar 

  3. Bryant, H.U., Bernton, E.W., Kenner, J.R., & Holaday, J.W. (1991). Role of adrenal cortical activation in the immunosuppressive effects of chronic morphine treatment. Endocrinology 128, 3253–3258.

    Article  PubMed  CAS  Google Scholar 

  4. Carr, D.J.J., Gebhardt, B.M., & Paul, D. (1993). Alpha adrenergic and Mu-2 opioid receptors are involved in morphine-induced suppression of splenocyte natural killer activity. J. Pharmacol. Exp. Ther. 264, 1179–1186.

    PubMed  CAS  Google Scholar 

  5. Hernandez, M.C., Flores, L.R., & Bayer, B.M. (1993). Immunosuppression by morphine is mediated by central pathways. J. Pharmacol. Exp. Ther. 267, 1336–1341.

    PubMed  CAS  Google Scholar 

  6. Taub, D.D., Eisenstein, T.K., Geller, E.B., Adler, M.W., & Rogers, T.J. (1991). Immunomodulatory activity of IA- and x-selective opioid agonists. Proc. Natl. Acad. Sci. U.S.A. 88, 360–364.

    Article  PubMed  CAS  Google Scholar 

  7. Pruett, S.B., Han, Y.-C., & Fuchs, B.A. (1992). Morphine suppresses primary humoral immune responses by a predominantly indirect mechanism. J. Pharmacol. Exp. Ther. 262, 923–928.

    PubMed  CAS  Google Scholar 

  8. Handbook on Genetically Standardized JAX Mice, 4th Edition (1991), The Jackson Laboratory, Bar Harbor, ME; and Personal Communication, Kim Cassidy (1994), Biological Testing Branch, NCI, Frederick, MD.

    Google Scholar 

  9. Wybran, J., Appelboom, T., Famaey, J.-P., & Govaerts, A. (1979). Suggestive evidence for receptors for morphine and methionine-enkephalin on normal human blood T lymphocytes. J. Immunol. 123, 1068–1070.

    PubMed  CAS  Google Scholar 

  10. Donahoe, R.M., Bueso-Ramos, C., Donahoe, F., Madden, J.J., & Falek, A. (1987). Mechanistic implications of the findings that opiates and other drugs of abuse moderate T-cell-surface receptors and antigenic markers. Ann. N.Y. Acad. Sci. 496, 711–717.

    Article  PubMed  CAS  Google Scholar 

  11. Donahoe, R.M., Bueso-Ramos, C., Falek, A., McClure, H., & Nicholson, J.K.A. (1988). Comparative effects of morphine on leukocytic antigenic markers of monkeys and humans. J. Neurosci. Res. 19, 157–165.

    Article  PubMed  CAS  Google Scholar 

  12. Peterson, P.K., Sharp, B., Gekker, G., Brummitt, C., & Keane, W.F. (1987). Opioid-mediated suppression of interferon-γ production by cultured peripheral blood mononuclear cells. J. Clin. Invest. 80, 824–831.

    Article  PubMed  CAS  Google Scholar 

  13. Chao, C.C., Molitor, T.W., Close, K., Hu, S., & Peterson, P.K. (1993). Morphine inhibits the release of tumor necrosis factor in human peripheral blood mononuclear cell cultures. Int. J. hnmunopharmac. 15, 447–453.

    Article  CAS  Google Scholar 

  14. Perez-Castrillon, J.-L., Perez-Arellanos, J.-L., Carcia-Palomo, J.-D., Jimeniz-Lopez, A., & De Castro, S. (1992). Opioids depress in vitro human monocyte chemotaxis. Immunopharmacology 23, 57–61.

    Article  PubMed  CAS  Google Scholar 

  15. Peterson, P.K., Sharp, B., Gekker, G., Brummitt, C., & Keane, W.F. (1987). Opioid-mediated suppression of cultured peripheral blood mononuclear cell respiratory activity. J. Immunol. 138, 3907–3912.

    PubMed  CAS  Google Scholar 

  16. Chao, C.C., Hu, S., Molitor, T.W., Zhou, Y., Murtaugh, M.P., Tsang, M., & Peterson, P.K. (1992). Morphine potentiates transforming growth factor-13 release from human peripheral blood mononuclear cell cultures. J. Pharmacol. Exp. Ther. 262, 19–24.

    PubMed  CAS  Google Scholar 

  17. Cassellas, A.M., Guardioloa, H., & Renaud, F.I. (1991). Inhibition by opioids of phagocytosis in peritoneal macrophages. Neuropeptides 18, 35–40.

    Article  Google Scholar 

  18. Szabo, I., Rojavin, M., Bussiere, J.L., Eiscnstein, T.K., Adler, M.W., & Rogers, T.J. (1993). Suppression of peritoneal macrophage phagocytosis of Candida albicans by opioids. J. Pharmacol. Exp. Ther. 267, 703–706.

    PubMed  CAS  Google Scholar 

  19. Bidlack, J.M., Saripalli, L.D., & Lawrence, D.M.P. (1992). κ-opioid binding sites on a murine lymphoma cell line. Eur. J. Pharmacol. 227, 256–265.

    Google Scholar 

  20. Carr, D.J.J., Kim, C.-H., DeCosta, B.R., Jacobson, A.E., Rice, K.C., & Blalock, J.E. (1988). Evidence for a x-class opioid receptor on cells of the immune system. Cell. Immunol. 116, 44–51.

    Article  PubMed  CAS  Google Scholar 

  21. Carr, D.J.J., DeCosta, B.R., Kim, C.-H., Jacobson, A.E., Guarcello, V., Rice, K.C., & Blalock, J.E. (1989). Opioid receptors on cells of the immune system: Evidence for δ- and κ-classes. J. Endocrinol. 122, 161–168.

    Article  PubMed  CAS  Google Scholar 

  22. Heagy, W., Shipp, M.A., & Finberg, R.W. (1992). Opioid receptor agonists and Ca2+ modulation in human B cell lines. J. Immunol. 149, 4074–4081.

    PubMed  CAS  Google Scholar 

  23. Guan, L., Townsend, Eisenstein, T.K., Adler, M.W., & Rogers, T.J. (1994). Both T cells and macrophages are targets of x-opioid-induced immunosuppression. Brain Behay. Immun. 8, 229–240.

    Article  CAS  Google Scholar 

  24. Flores, L.R., Hernandez, M.C., & Bayer, B.M. (1994). Acute immunosuppressive effects of morphine: lack of involvement of pituitary and adrenal factors. J. Pharmacol. Exp. Ther. 268, 1129–1134.

    PubMed  CAS  Google Scholar 

  25. Fecho, K., Maslonek, K.A., Coussons-Read, M.E., Dykstra, L.A., & Lysle, D.T. (1994). Macrophage-derived nitric oxide is involved in the depressed concanavalin A responsiveness of splenic lymphocytes from rats administered morphine in vivo. J. Immunol. 152, 5845–5852.

    PubMed  CAS  Google Scholar 

  26. Bussiere, J.L., Adler, M.W., Rogers, T.J., & Eisenstein, T.K. (1993). Cytokine reversal of morphine-induced suppression of the antibody response. J. Pharmacol. Exp. Ther. 264, 591–597.

    PubMed  CAS  Google Scholar 

  27. Bayer, B.M., Gastonguay, M.R., & Hernandez, M.C. (1992). Distinction between the in vitro and in vivo inhibitory effects of morphine on blood lymphocyte proliferation based on agonist sensitivity and naltrexone reversibility. Immunopharmacology 23, 117–124.

    Article  PubMed  CAS  Google Scholar 

  28. Gwynn, G.J., & Domino, E.F. (1984). Genotype-dependent behavioral sensitivity to mu and kappa opiate agonists. I. acute and chronic effects on mouse locomotor activity. J. Pharmacol. Exp. Ther. 231 306–311.

    PubMed  CAS  Google Scholar 

  29. Gwynn, G.J., & Domino, E.F. (1984). Genotype-dependent behavioral sensitivity to mu and kappa opiate agonists. II. antinociceptive tolerance and physical dependence. J. Pharmacol. Exp. Ther. 231 312–316.

    PubMed  CAS  Google Scholar 

  30. Belknap, J.K., Noordewier, B., & Lame, M. (1989). Genetic dissociation of multiple morphine effects among C57BL/6, DBA/2J and C3H/HeJ inbred mouse strains. Physiol. Behav. 46, 69–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eisenstein, T.K., Meissler, J.J., Bussiere, J.L., Rogers, T.J., Geller, E.B., Adler, M.W. (1995). Mouse Strain Differences in in vivo and in vitro Immunosuppressive Effects of Opioids. In: Sharp, B.M., Eisenstein, T.K., Madden, J.J., Friedman, H. (eds) The Brain Immune Axis and Substance Abuse. Advances in Experimental Medicine and Biology, vol 373. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1951-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1951-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5801-5

  • Online ISBN: 978-1-4615-1951-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics