Skip to main content

Studies of exciton localization in quantum-well structures by nonlinear-optical techniques

  • Chapter
Confined Electrons and Photons

Part of the book series: NATO ASI Series ((NSSB,volume 340))

  • 2344 Accesses

Abstract

An exciton moving in a random potential is a promising model system for the study of localization effects, since its energy spectrum can be measured directly, and there are no complications resulting from Coulomb interaction. This paper reviews our work on the use of nonlinear techniques, such as hole burning and four-wave mixing, to detect the motion of two-dimensional excitons in thin GaAs-AlxGa1–x As heterostructures, in which the random potential comes from fluctuations in layer width. A clear distinction is found between the behavior of excitons below and above the absorption line center. Below the line center, hole burning is easy, and both spectral and spatial diffusion are slow, i.e., the excitons behave as if they are localized; above it the reverse is true. This is strong evidence for a mobility edge at the line center, which is the position predicted classically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492(1958).

    Article  Google Scholar 

  2. N. F. Mott and E. A. Davis. Electronic Processes in Noncrystalline Materials, 2nd éd. (Clarendon, Oxford, 1979).

    Google Scholar 

  3. P. W. Anderson, “Localization redux,” Physica 117/118B, 30 (1983).

    Google Scholar 

  4. A. F. Ioffe and A. R. Regel, “Noncrystalline, amorphous and liquid electronic semiconductors,” Prog. Semicond. 4, 237 (1960).

    Google Scholar 

  5. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: absence of quantum diffusion in 2D,” Phys. Rev. Lett. 42, 673 (1979).

    Article  Google Scholar 

  6. D. J. Bishop, R. C. Dynes, and D. C. Tsui, “Nonmetallic conduction in electron inversion layers at low temperatures,” Phys. Rev. Lett. 44, 1153 (1980).

    Article  Google Scholar 

  7. R. G. Wheeler. “Magnetoconductance and weak localization in silicon inversion layers,” Phys. Rev. B 24, 4645 (1981).

    Google Scholar 

  8. D. J. Bishop, R. C. Dynes, and D. C. Tsui, “Magnetoresistance in Si MOSFETs; evidence for weak localization and correlation,” Phys. Rev. B 26, 773 (1982).

    Google Scholar 

  9. N. F. Mott, “Electrical properties of liquid mercury,” Phil. Mag. 13, 989 (1966)

    Article  Google Scholar 

  10. see also M. H. Cohen, H. Fritzsche, and S. R. Ovshinsky, “Simple band model for amorphous semiconducting alloys;” Phys. Rev. Lett. 22, 1065 (1969).

    Article  Google Scholar 

  11. B. L. Altshuler, A. G. Aronov, and P. A. Lee, “Interaction effects in disordered Fermi systems in 2D,” Phys. Rev. Lett. 44, 1288 (1980).

    Article  Google Scholar 

  12. N. F. Mott, “The basis of the electron theory of metals, with special reference to the transition metals,” Proc. Phys. Soc. (London) 62, 416 (1949)

    Article  Google Scholar 

  13. “On the transition to metallic conduction in semiconductors,” Can. J. Phys. 34, 1356 (1956)

    Google Scholar 

  14. “The transition to the metallic state,” Phil. Mag. 6, 287 (1961).

    Google Scholar 

  15. A. E. White, R. C. Dynes, and J. P. Garno, “Low temperature magnetoresistance in 2D Mg films,” Phys. Rev. B 29, 3694 (1984).

    Google Scholar 

  16. E. Arnold. “Disorder induced carrier localization in Si surface layers,” Appl. Phys. Lett. 26, 705 (1974)

    Article  Google Scholar 

  17. C. J. Adkins, “The Hall effect in inversion layers,” Phil. Mag. 38, 535 (1978).

    Article  Google Scholar 

  18. N. F. Mott, M. Pepper, S. Pollitt, R. H. Wallis, and C. J. Adkins, “The Anderson transition,” Proc. R. Soc. London Ser. A 345, 169 (1975).

    Article  Google Scholar 

  19. A. Y. Cho and J. R. Arthur, “Molecular beam epitaxy,” Prog. Solid State Chem. 10, 157 (1975).

    Article  Google Scholar 

  20. R. D. Dupuis, L. A. Moudy, and P. D. Dapkus, “Preparation and properties of Ga1-x AlxAs-GaAs heterojunctions grown by MOCVD,” in GaAs and Related Compounds, C. N. Wolfe, ed. (Institute of Physics, London, 1979).

    Google Scholar 

  21. R. C. Miller, R. D. Dupuis, and P. M. Petroff, “High quality single GaAs quantum wells grown by MOCVD,” Appl. Phys. Lett. 44, 508–510 (1984).

    Article  Google Scholar 

  22. R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1-x As-Ga As-AlxGa1-x As heterostructures,” Phys. Rev. Lett. 33, 827 (1974)

    Article  Google Scholar 

  23. R. Dingle, “Confined carrier quantum states in ultra-thin semiconductor heterostructures,” Festkoerperprobleme 15, 21 (1975).

    Article  Google Scholar 

  24. R. C. Miller, D. A. Kleinman, and A. C. Gossard, “Energy gap discontinuities and effective masses for GaAs-AlxGa1-x As quantum wells,” Phys. Rev. B 29, 7085 (1984).

    Google Scholar 

  25. R. C. Miller, AT&T Bell Laboratories, Murray Hill, New Jersey 07974 (personal communication, 1984).

    Google Scholar 

  26. P. M. Petroff, A. C. Gossard, W. Wiegmann, and A. L. Savage, “Crystal growth kinetics in (GaAs)n-(AlAs)m superlattices deposited by MBE,” J. Crystal Growth 44, 5 (1978).

    Article  Google Scholar 

  27. C. Weisbuch, R. Dingle, A. C. Gossard, and W. Wiegmann, “Optical characterization of interface disorder in GaAs-AlxGa1-x As multi-quantum well structures,” Solid State Commun. 38, 709 (1981).

    Article  Google Scholar 

  28. O. Simpson, “Electronic properties of aromatic hydrocarbons III. Diffusion of excitons,” Proc. R. Soc. London Ser. A 238, 402 (1956).

    Google Scholar 

  29. J. P. Woerdman, “Some optical and electrical properties of a laser-generated free-carrier plasma in Si,” Philips Research Rep. Suppl. No. 7 (1971).

    Google Scholar 

  30. H. J. Eichler, “Forced light scattering at laser-induced gratings—a method for investigation of optically excited solids,” Festkoerperprobleme 18, 241 (1978).

    Google Scholar 

  31. J. R. Salcedo, A. E. Siegman, D. D. Dlott, and M. D. Fayer, “Dynamics of exciton transport in molecular crystals: the picosecond transient grating method,” Phys. Rev. Lett. 41, 131 (1978).

    Article  Google Scholar 

  32. M. D. Fayer, “Exciton coherence,” in Spectroscopy and Exciton Dynamics of Condensed Molecular Systems, V. M. Agranovich and R. M. Hochstrasser, eds. (North-Holland, Amsterdam, 1983).

    Google Scholar 

  33. J. Hegarty, M. D. Sturge, A. C. Gossard, and W. Wiegmann, “Degenerate four wave mixing at the 2D exciton resonance of GaAs multiquantum well structures,” Appl. Phys. Lett. 40, 132 (1982).

    Article  Google Scholar 

  34. H. Kalt, V. G. Lyssenko, R. Renner, and C. Klingshirn, “Laser-induced gratings and wave mixing in large-gap semiconductors,” J. Opt. Soc. Am. B 2, 1188–1196 (1985).

    Google Scholar 

  35. Y. M. Wong and V. M. Kenkre, “Extension of exciton transport theory for transient grating experiments into the intermediate coherence domain,” Phys. Rev. B 22, 3072 (1980).

    Google Scholar 

  36. M. D. Sturge, J. Hegarty, and L. Goldner, “Localization of 2D excitons in GaAs-AlGaAs quantum-well layers,” in Proceedings of the Seventeenth International Conference on the Physics of Semiconductors, D. Chadi, ed. (Springer-Verlag, New York, to be published).

    Google Scholar 

  37. W. M. Yen and P. M. Selzer, eds., Laser Spectroscopy of Solids (Springer-Verlag, Berlin. 1981).

    Google Scholar 

  38. R. Kopelman, “Energy transport in mixed molecular crystals,” in Spectroscopy and Excitation Dynamics of Condensed Molecular Systems, V. M. Agranovich and R. M. Hochstrasser, eds. (North-Holland, Amsterdam, 1983).

    Google Scholar 

  39. G. F. Imbusch and R. Kopelman, “Optical spectroscopy of electronic centers in solids,” in Laser Spectroscopy of Solids, W. M. Yen and P. M. Selzer, eds. (Springer-Verlag, Berlin, 1981), Chap. 1.

    Google Scholar 

  40. T. Holstein, S. K. Lyo, and R. Orbach, “Excitation transfer in disordered systems,” in Laser Spectroscopy of Solids, W. M. Yen and P. M. Selzer, eds. (Springer-Verlag, Berlin, 1981), Chap. 2.

    Google Scholar 

  41. E. Cohen and M. D. Sturge, “Fluorescent line narrowing, localized exciton states and spectral diffusion in the mixed semiconductor CdSx Se1-x ,” Phys. Rev. B 25, 3828 (1982)

    Google Scholar 

  42. T. Takagahara, “Theoretical study of population dynamics of 2D excitons in GaAs-AlAs quantum well structures,” in Proceedings of the Seventeenth International Conference on the Physics of Semiconductors, D. Chadi; ed. (Springer-Verlag, New York, to be published).

    Google Scholar 

  43. A. J. Grant and E. A. Davis, “Hopping conduction in amorphous semiconductors,” Solid Sate Commun. 15, 563 (1974).

    Article  Google Scholar 

  44. D. E. McCumber and M. D. Sturge, “Linewidth and temperature shift of the R lines in ruby,” J. Appl. Phys. 34, 1682 (1983).

    Article  Google Scholar 

  45. D. Hsu and J. L. Skinner, “On the thermal broadening of zero-phonon impurity lines in absorption and fluorescent spectra,” J. Chem. Phys. 81, 1604 (1984).

    Article  Google Scholar 

  46. Y. Masumoto, S. Shionoya, and H. Kawaguchi, “Picosecond time-resolved study of excitons in GaAs-AlAs multiquantum well structures,” Phys. Rev. B 29, 3324 (1984).

    Google Scholar 

  47. J. Hegarty, M. D. Sturge, C. Weisbuch, A. C. Gossard, and W. Wiegmann, “Resonant Rayleigh scattering in an inhomogeneous medium: a new probe of the homogeneous linewidth,” Phys. Rev. Lett. 49, 930 (1982).

    Article  Google Scholar 

  48. J. Hegarty, L. Goldner, and M. D. Sturge, “Localized and delo-calized 2D excitons in GaAs-AlxGa1-x As multiple quantum well structures,” Phys. Rev. B 30, 7346 (1984). Note that the absorption scale for the 102-Å sample (Fig. 1 of this reference) should be multiplied by a factor of 1.8 (see Erratum. Phys. Rev. B, to be published).

    Google Scholar 

  49. Resonant Rayleigh scattering is a linear process and is not to be confused with resonant Rayleigh-type mixing [T. Yajima and H. Souma, “Study of ultra-fast relaxation processes by resonant Rayleigh-type mixing,” Phys. Rev. B 17, 309 (1978)], which is a nonlinear four-wave mixing process closely related to the transient-grating technique.

    Google Scholar 

  50. N. Bloembergen, E. M. Purcell, and R. V. Pound, “Relaxation effects in NMR absorption,” Phys. Rev. 73, 679 (1948)

    Article  Google Scholar 

  51. M. L. Spaeth and W. R. Sooy, “Fluorescence and bleaching of organic dyes,” J. Chem. Phys. 48, 2315 (1968)

    Article  Google Scholar 

  52. P. M. Selzer, “General techniques and experimental methods,” in Laser Spectroscopy of Solids, W. M. Yen and P. M. Selzer. eds. (Springer-Verlag, Berlin, 1981), Chap. 4.

    Google Scholar 

  53. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584 (1970)

    Article  Google Scholar 

  54. R. L. Fork, C. V. Shank, C. Hirliman, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1 (1983).

    Article  Google Scholar 

  55. J. Hegarty and M. D. Sturge, “Exciton hole-burning in GaAs-AlGaAs multi-quantum wells,” in Proceedings of the International Conference on Luminescence, W. M. Yen and J. C. Wright, eds. (North-Holland, Amsterdam, 1984), p. 494.

    Google Scholar 

  56. N. Peyghambarian, H. M. Gibbs, J. L. Jewell, A. Antonetti, A. Migus, D. Hulin, and A. Mysyrowicz, “Blue shift of the exciton resonance due to exciton-exciton interactions in a multiple-quantum-well structure,” Phys. Rev. Lett. 53, 2433 (1984).

    Article  Google Scholar 

  57. W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank. A. C. Gossard. and W. Wiegmann, “Femtosecond dynamics of nonequilibrium correlated electron-hole pair distributions in room-temperature GaAs multiple quantum well structures,” in Ultrafast Phenomena IV, D. H. Auston and K. B. Eisenthal, eds. (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  58. J. Hegarty. “Effect of hole burning on pulse propagation in GaAs quantum wells,” Phys. Rev. B 25, 4324 (1982).

    Google Scholar 

  59. J. M. Ziman. Models of Disorder (Cambridge U. Press, Cambridge, 1979), p. 484.

    Google Scholar 

  60. D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconducter quantum-well structures,” J. Opt Soc. Am. B. 2, 1173–1175 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hegarty, J., Sturge, M.D. (1995). Studies of exciton localization in quantum-well structures by nonlinear-optical techniques. In: Burstein, E., Weisbuch, C. (eds) Confined Electrons and Photons. NATO ASI Series, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1963-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1963-8_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5807-7

  • Online ISBN: 978-1-4615-1963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics