Skip to main content

Abstract

All transistor circuits are nonlinear. That is to say, portions of many of the voltage or current signals in such circuits are not only directly proportional to other signals, but are proportional to the products, squares, and cubes of other signals. A large number of circuits, however, are designed to approximate linear systems; we designate such circuits as quasilinear. Linear systems are immensely useful for signal processing and, in the context of the more general class of nonlinear systems, enjoy great simplifications in concept and in mathematical analysis. Linear system theory, with its powerful principle of superposition, offers a lucidity and intuitive power of great value to circuit and system designers. For the most part, the techniques of linear system theory are applicable to quasilinear circuits as well. For precise applications, however, the circuit designer must evaluate the limits of the linear approximation and moreover, must often devise ways to improve a circuit’s conformance to linear operation. The analytical and conceptual tools necessary for such evaluation are the topic of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Narayanan, “Transistor distortion analysis using Volterra series representation,” Bell Sys. Tech. J., pp. 991–1024, May 1967.

    Google Scholar 

  2. S. Narayanan, “Application of Volterra series to intermodulation distortion analysis of transistor feedback amplifiers,” IEEE Trans. Circuit Theory, vol. CT-17, pp. 518–527, Nov. 1970.

    Article  Google Scholar 

  3. K. A. Simons, “The decibel relationships between amplifier distortion products,” Proc. IEEE,vol. 58, pp. 1071–1086, July 1970.

    Article  Google Scholar 

  4. S. H. Chisholm and L. W. Nagel, “Efficient computer simulation of distortion in electronic circuits,” IEEE Trans. Circuit Theory, vol. CT-20, pp. 742–745, Nov. 1973.

    Google Scholar 

  5. Y. L. Kuo, “Distortion analysis of bipolar transistor circuits,” IEEE Trans. Circuit Theory, vol. CT-20, pp. 709–716, Nov. 1973.

    Google Scholar 

  6. L. O. Chua and Lin, Computer-Aided Analysis of Electronic Circuits. Englewood Cliffs, New Jersey: Prentice Hall, 1975.

    Google Scholar 

  7. M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems. Malabar, Florida: Krieger, 1989. Reprinted with additional material from original 1980 edition by Wiley.

    Google Scholar 

  8. M. Schetzen, “Nonlinear system modeling based on the Wiener theory,” Proc. IEEE,vol. 69, pp. 1557–1573, Dec. 1981.

    Article  Google Scholar 

  9. M. T. Abuelma’atti, “Improved analysis of the harmonic and intermodulation performance of operational amplifiers,” Proc. IEE, vol. 131, pp. 226–233, Dec. 1984.

    Google Scholar 

  10. M. Banu and Y. Tsividis, “Detailed analysis of nonidealities in MOS fully integrated active RC filters based on balanced networks,” Proc. IEE, vol. 131, pp. 190–196, Oct. 1984.

    Google Scholar 

  11. M. Fliess, M. Lamnabhi, and F. Lamnabhi-Lagarrigue, “An algebraic approach to nonlinear functional expansions,” IEEE Trans. Circuits Syst., vol. CAS-30, pp. 554–570, Aug. 1983.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. M. Khadr and R. H. Johnston, “Distortion in high-frequency FET amplifiers,” IEEE J. Solid-State Circuits, vol. SC-9, pp. 180–189, Aug. 1974.

    Article  Google Scholar 

  13. H. K. Thapar and B. J. Leon, “Transform-domain and time-domain characterization of nonlinear systems with Volterra series,” IEEE Trans. Circuits Syst., vol. CAS-31, pp. 906–912, Oct. 1984.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. A. Maas, Microwave Mixers. Boston: Artech House, 2nd ed., 1993.

    Google Scholar 

  15. E. M. Bailey, Steady State Harmonic Analysis of Nonlinear Networks. Ph.D. dissertation, Stanford University, Stanford, CA, 1968.

    Google Scholar 

  16. J. H. Haywood and Y. L. Chow, “Intermodulation distortion analysis using a frequency-domain harmonic balance technique,” IEEE Trans. Microwave Theory and Techniques, vol. 36, pp. 1251–1257, Aug. 1988.

    Article  Google Scholar 

  17. P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuits. New York: Wiley, 2nd ed., 1984.

    Google Scholar 

  18. F. D. Waldhauer, “Anticausal analysis of feedback amplifiers,” Bell Sys. Tech. J., vol. 56, pp. 1337–1386, Oct. 1977.

    MATH  Google Scholar 

  19. F. D. Waldhauer, Feedback. New York: Wiley, 1982.

    Google Scholar 

  20. H. W. Bode, Network Analysis and Feedback Amplifier Design. New York: Van Nostrand, 1945.

    Google Scholar 

  21. E. Seevinck and R. F. Wassenaar, “A versatile CMOS linear transconductor/square-law function circuit,”IEEE J. Solid-State Circuits, vol. SC-22, pp. 366–377, June 1987.

    Article  Google Scholar 

  22. P. Antognetti and G. Massobrio, eds., Semiconductor Device Modeling with SPICE. New York: McGraw-Hill, 1988.

    Google Scholar 

  23. S. A. Maas, “How to model intermodulation distortion,” IEEE MIT- S Digest, pp. 149–151, 1991.

    Google Scholar 

  24. Y. P. Tsividis and K. Suyama, “MOSFET modeling for analog circuit CAD: Problems and prospects,” IEEE J. Solid-State Circuits, vol. 29, pp. 210–216, Mar. 1994.

    Article  Google Scholar 

  25. D. L. Feucht, Handbook of Analog Circuit Design. San Diego: Academic Press, 1990.

    Google Scholar 

  26. The MathWorks, Inc., PRO-MATLAB. The MathWorks, Inc., South Natick, MA, 1990.

    Google Scholar 

  27. R. W. Hamming, Digital Filters. Englewood Cliffs, New Jersey: Prentice-Hall, 3rd ed., 1989.

    Google Scholar 

  28. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. Englewood Cliffs, New Jersey: Prentice-Hall, 1975.

    Google Scholar 

  29. P. D. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodigrams,” IEEE Trans. on Audio and Electroacoustics,vol. AU-15, pp. 70–73, June 1967. Reprinted in Digital Signal Processing, IEEE Press, pp. 335–338, New York, 1972.

    Article  MathSciNet  Google Scholar 

  30. Wolfram Research, Inc., Mathematica. Wolfram Research, Inc., Champaign, IL, Version 2.0 ed., 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Willingham, S.D., Martin, K. (1995). Distortion in Quasilinear Circuits. In: Integrated Video-Frequency Continuous-Time Filters. The Springer International Series in Engineering and Computer Science, vol 323. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2347-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2347-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5995-1

  • Online ISBN: 978-1-4615-2347-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics