Skip to main content

Fermentation of Acetate

  • Chapter
Methanogenesis

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

It was 100 years after the discovery of “combustible air” by Alessandro Volta in 1776 that acetate was first implicated as a substrate for methanogenesis. In 1876, Hoppe-Seyler demonstrated that sewage sludge produced methane when amended with acetate. Later, Hoppe-Seyler (1887) showed that enrichment cultures converted the substrate to equimolar amounts of methane and carbon dioxide. Nearly 40 years later, Söehngen (1906) described Gram-negative sarcina and a filamentous rod-shaped microorganism in acetate-utilizing enrichment cultures. However, nearly another 40 years elapsed before Schnellen (1947) described the first pure cultures (of Methanosarcina barken) which grew on acetate. Growth was slow and subsequent isolates also produced methane from acetate at rates which were considered too low to account for methanogenesis in the environment. As a result, it was hypothesized that cocultures were required for the rapid conversion of acetate to methane. During the 1960s, it became evident that most of the methane in freshwater environments is derived from acetate (Jeris and McCarty, 1965; Smith and Mah, 1966), a development which created a renewed interest in methanogenic acetotrophs. In the late 1970s and early 1980s, it was shown that pure cultures of Methanosarcina converted acetate to methane and carbon dioxide in defined media and at rates much greater than previously reported (Mah et al., 1978; Weimer and Zeikus, 1978; Smith and Mah, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbanat, D. R., and J. G. Ferry. 1991. Resolution of component proteins in an enzyme complex from Methanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA. Proc. Natl. Acad. Sci. USA 88:3272–3276.

    Article  PubMed  CAS  Google Scholar 

  • Abbanat, D. R., and J. G. Ferry. 1990. Synthesis of acetyl-CoA by the carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila. J. Bacteriol. 172:7145–7150.

    CAS  Google Scholar 

  • Aceti, D. J., and J. G. Ferry. 1988. Purification and characterization of acetate kinase from acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:15444–15448.

    CAS  Google Scholar 

  • Ahring, B. K., F. Alatriste-Mondragon, P. Westermann, and R. A. Man. 1991. Effects of cations on Methanosarcina thermophila TM-1 growing on moderate concentrations of acetate. Production of single cells. Appl. Microbiol. Biotechnol. 35:686–689.

    Article  CAS  Google Scholar 

  • Ahring, B. K., and P. Westermann. 1984. Isolation and characterization of a thermophilic, acetate-utilizing methanogenic bacterium. FEMS Microbiol. Lett. 25:47–52.

    Article  CAS  Google Scholar 

  • Ahring, B. K., and P. Westermann. 1985. Methanogenesis from acetate: physiology of a thermophilic, acetate-utilizing methanogenic bacterium. FEMS Microbiol. Lett. 28:15–19.

    Article  CAS  Google Scholar 

  • Ahring, B. K., P. Westermann, and R. A. Man. 1991. Hydrogen inhibition of acetate metabolism and kinetics of hydrogen consumption by Methanosarcina thermophila TM-1. Arch. Microbiol. 157:38–42.

    Article  CAS  Google Scholar 

  • Albracht, S. P. J., D. Ankel-Fuchs, R. Böcher, J. Ellermann, J. Moll, J. W. van der Zwaan, and R. K. Thauer. 1988. Five new EPR signals assigned to nickel in methylcoenzyme M reductase from Methanobacterium thermoautotrophicum, strain Marburg. Biochim. Biophys. Acta. 941:86–102.

    Article  Google Scholar 

  • Aldrich, H. C., D. B. Beimborn, M. Bokranz, and P. Schönheit. 1987. Immunocytochemical localization of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Arch. Microbiol. 147:190–194.

    Article  CAS  Google Scholar 

  • Baresi, L. 1984. Methanogenic cleavage of acetate by ly sates of Methanosarcina barkeri. J. Bacteriol. 160:365–370.

    CAS  Google Scholar 

  • Baresi, L., R. A. Man, D. M. Ward, and I. R. Kaplan. 1978. Methanogenesis from acetate: enrichment studies. Appl. Environ. Microbiol. 36:186–197.

    PubMed  CAS  Google Scholar 

  • Baresi, L. and R. S. Wolfe. 1981. Levels of coenzyme F420, coenzyme M, hydrogenase, and methylcoenzyme M methylreductase in acetate-grown Methanosarcina. Appl. Environ. Microbiol. 41:388–391.

    CAS  Google Scholar 

  • Barker, H.A. 1936. On the biochemistry of the methane fermentation. Arch. Microbiol. 7:404–419.

    CAS  Google Scholar 

  • Blaut, M. and G. Gottschalk. 1982. Effect of trimethylamine on acetate utilization by Methanosarcina barkeri. Arch. Microbiol. 133:230–235.

    Article  CAS  Google Scholar 

  • Boone, D. R. 1991. Strain-GP6 is proposed as the neotype strain of Methanothrix soehngenii VP pro dynon Methanothrix concilii VP and Methanosaeta concilii VP. Int. J. Syst. Bacteriol. 41:588–589.

    Article  Google Scholar 

  • Boone, D. R., J. A. G. F. Menaia, J. E. Boone, and R. A. Mah. 1987. Effects of hydrogen pressure during growth and effects of pregrowth with hydrogen on acetate degradation by Methanosarcina species. Appl. Environ. Microbiol. 53:83–87.

    PubMed  CAS  Google Scholar 

  • Bott, M., B. Eikmanns, and R. K. Thauer. 1986. Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri. Eur. J. Biochem. 159:393–398.

    Article  CAS  Google Scholar 

  • Bott, M., and R. K. Thauer. 1989. Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri. Eur. J. Biochem. 179:469–472.

    Article  CAS  Google Scholar 

  • Buswell, A. M. and F. W. Sollo. 1948. The mechanism of the methane fermentation. J. Am. Chem. Soc. 70:1778–1780.

    Article  PubMed  CAS  Google Scholar 

  • Cao, X., and J. A. Krzycki. 1991. Acetate-dependent methylation of two corrinoid proteins in extracts of Methanosarcina barkeri. J. Bacteriol. 173:5439–5448.

    CAS  Google Scholar 

  • Clements, A.P., and J.G. Ferry. 1992. Cloning, nucleotide sequence, and transcriptional analyses of the gene encoding a ferredoxin from Methanosarcina thermophila. J. Bacteriol. 174:5244–5250.

    CAS  Google Scholar 

  • Clements, A. P., R. H. White, and J. G. Ferry. 1993. Structural characterization and physiological function of component B from Methanosarcina thermophila. Arch. Microbiol., 159:296–300.

    Article  CAS  Google Scholar 

  • Eggen, R. I. L., A. C. M. Geerling, A. B. P. Boshoven, and W. M. de Vos. 1991. Cloning, sequence analysis, and functional expression of the acetyl coenzyme A synthetase gene from Methanothrix soehngenii in Escherichia coli. J. Bacteriol., 173:6383–6389.

    CAS  Google Scholar 

  • Eggen, R. I. L., A. C. M. Geerling, M. S. M. Jetten, and W. M. de Vos. 1991. Cloning, expression, and sequence analysis of the genes for carbon monoxide dehydrogenase of Methanothrix soehngenii. J. Biol. Chem. 266:6883–6887.

    CAS  Google Scholar 

  • Eikmanns, B., and R. K. Thauer. 1984. Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barkeri grown on acetate. Arch. Microbiol. 138:365–370.

    Article  CAS  Google Scholar 

  • Eikmanns, B., and R. K. Thauer. 1985. Evidence for the involvement and role of a corrinoid enzyme in methane formation from acetate in Methanosarcina barkeri. Arch. Microbiol. 142:175–179.

    Article  CAS  Google Scholar 

  • Fathepure, B. Z. 1983. Isolation and characterization of an aceticlastic methanogen from a biogas digester. FEMS Microbiol. Lett. 19:151–156.

    Article  CAS  Google Scholar 

  • Fathepure, B. Z. 1987. Factors affecting the methanogenic activity of Methanothrix soehngenii VNBF. Appl. Environ. Microbiol. 53:2978–2982.

    PubMed  CAS  Google Scholar 

  • Ferguson, T. J., and R. A. Man. 1983. Effect of H2-CO2 on methanogenesis from acetate or methanol in Methanosarcina spp. Appl. Environ. Microbiol. 46:348–355.

    PubMed  CAS  Google Scholar 

  • Ferry, J. G. 1992. Methane from acetate. J. Bacteriol. 174:5489–5495.

    PubMed  CAS  Google Scholar 

  • Fischer, R., P. Gartner, A. Yeliseev, and R. K. Thauer. 1992. N-5-methyltetrahydromethanopterin — coenzyme-M methyltransferase in methanogenic archaebacteria is a membrane protein. Arch. Microbiol. 158:208–217.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, R., and R. K. Thauer. 1988. Methane formation from acetyl phosphate in cell extracts of Methanosarcina barkeri. Dependence of the reaction on coenzyme A. FEBS Lett. 228:249–253.

    Article  CAS  Google Scholar 

  • Fischer, R., and R. K. Thauer. 1989. Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri. Arch. Microbiol. 151:459–465.

    Article  CAS  Google Scholar 

  • Fischer, R., and R. K. Thauer. 1990a. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett. 269:368–372.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, R., and R. K. Thauer. 1990b. Methanogenesis from acetate in cell extracts of Methanosarcina barkeri: isotope exchange between CO2 and the carbonyl group of acetyl-CoA, and the role of H2. Arch. Microbiol. 153:156–162.

    Article  CAS  Google Scholar 

  • Grahame, D. A. 1989. Different isozymes of methylcobalamin-2-mercaptoethanesulfonate methyltransferase predominate in methanol-grown versus acetate-grown Methanosarcina barkeri. J. Biol. Chem. 264: 12890–12894.

    CAS  Google Scholar 

  • Grahame, D. A. 1991. Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J. Biol. Chem. 266:22227–22233.

    PubMed  CAS  Google Scholar 

  • Grahame, D. A., and T. C. Stadtman. 1987a. Carbon monoxide dehydrogenase from Methanosarcina barkeri. Disaggregation, purification, and physiochemical properties of the enzyme. J. Biol. Chem. 262:3706–3712.

    PubMed  CAS  Google Scholar 

  • Grahame, D. A., and T. C. Stadtman. 1987b. In vitro methane and methyl coenzyme M formation from acetate: evidence that acetyl-CoA is the required intermediate activated form of acetate. Biochem. Biophys. Res. Commun. 147:254–258.

    Article  PubMed  CAS  Google Scholar 

  • Guyot, J. P. 1986. Role of formate in methanogenesis from xylan by Cellulomonas sp. associated with methanogens and Desulfovibrio vulgaris: inhibition of the aceticlastic reaction. FEMS Microbiol. Lett. 34:149–153.

    Article  CAS  Google Scholar 

  • Guyot, J. P., and F. Ramirez. 1989. Inhibition of the anaerobic acetate degradation by formate. Biotechnol. Lett. 11:365–368.

    Article  CAS  Google Scholar 

  • Harder, S. R., W.-P. Lu, B. A. Feinberg, and S. W. Ragsdale. 1989. Spectroelectrochemical studies of the corrinoid iron-sulfur protein involved in acetyl coenzyme-A synthesis by Clostridium thermoaceticum. Biochemistry 28:9080–9087.

    CAS  Google Scholar 

  • Hausner, W., G. Frey, and M. Thomm. 1991. Control regions of an archaeal gene. A TATA box and an initiator element promote cell-free transcription of the tRNAval gene of Methanococcus vannielii. J. Mol. Biol. 222:495–508.

    Article  CAS  Google Scholar 

  • Hedderich, R., A. Berkessel, and R. K. Thauer. 1989. Catalytic properties of the heterodisulfide reductase involved in the final step of methanogenesis. FEBS Lett. 255:67–71.

    Article  CAS  Google Scholar 

  • Hoppe-Seyler, F. 1876. Ueber die processe der gährungen und ihre beziehung zum leben der Organismen. Pflügers Arch. Ges. Physiol. 12:1–17.

    Article  Google Scholar 

  • Hoppe-Seyler, F. 1887. Die methangaehrung der essigsaeuer. Hoppe-Seyler’s Z. Physiol. Chem. 11:561–568.

    Google Scholar 

  • Huser, B. A., K. Wuhrmann, and A. J. B. Zehnder. 1982. Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 132:1–9.

    Article  CAS  Google Scholar 

  • Hutten, T. J., H. C. M. Bongaerts, C. van der Drift, and G. D. Vogles. 1980. Acetate, methanol and carbon dioxide as substrates for growth of Methanosarcina barkeri. Antonie van Leeuwenhoek J. Microbiol. Serol. 46:601–610.

    Article  CAS  Google Scholar 

  • Jablonski, P. E., A. A. DiMarco, T. A. Bobik, M. C. Cabell, and J. G. Ferry. 1990. Protein content and enzyme activities in methanol- and acetate-grown Methanosarcina thermophila. J. Bacteriol. 172:1271–1275.

    CAS  Google Scholar 

  • Jablonski, P. E., and J. G. Ferry. 1991. Purification and properties of methyl coenzyme M methylreductase from acetate-grown Methanosarcina thermophila. J. Bacteriol. 173:2481–2487.

    CAS  Google Scholar 

  • Jablonski, P. E., W.-P. Lu, S. W. Ragsdale, and J. G. Ferry. 1993. Characterization of the metal centers of the corrinoid/iron-sulfur component of the CO dehydrogenase enzyme complex from Methanosarcina thermophila by EPR spectroscopy and spectroelectrochemistry. J. Biol. Chem. 268:325–329.

    PubMed  CAS  Google Scholar 

  • Jaun, B., and A. Pfaltz. 1988. Coenzyme F430 from methanogenic bacteria: methane formation by reductive carbon-sulfur bond cleavage of methyl sulphonium ions catalysed by F430 pentamethyl ester, J. Chem. Soc. Chem. Comm. 293–294.

    Google Scholar 

  • Jeris, J. S., and P. L. McCarty. 1965. The biochemistry of methane fermentation using 14C-tracers. J. Water Poll Control Fed. 37:178–192.

    CAS  Google Scholar 

  • Jetten, M. S. M., A. J. Fluit, A. J. M. Stams, and A. J. B. Zehnder. 1992. A fluoride-insensitive inorganic pyrophosphatase isolated from Methanothrix soehngenii. Arch. Microbiol. 157:284–289.

    Article  CAS  Google Scholar 

  • Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1992. Methanogenesis from acetate — A comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol. Rev. 88:181–198.

    Article  CAS  Google Scholar 

  • Jetten, M. S. M., W. R. Hagen, A. J. Pierik, A. J. M. Stams, and A. J. B. Zehnder. 1991. Paramagnetic centers and acetyl-coenzyme A/CO exchange activity of carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur. J. Biochem. 195:385–391.

    Article  CAS  Google Scholar 

  • Jetten, M. S. M., A. J. Pierik, and W. R. Hagen. 1991. EPR characterization of a highspin system in carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur. J. Biochem. 202:1291–1297.

    Article  CAS  Google Scholar 

  • Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1991. Adenine nucleotide content and energy charge of Methanothrix soehngenii during acetate degradation. FEMS Microbiol. Lett. 84:313–317.

    Article  CAS  Google Scholar 

  • Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1990a. Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol. Ecol. 73:339–344.

    Article  CAS  Google Scholar 

  • Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1990b. Purification and some properties of the methyl-CoM reductase of Methanothrix soehngenii. FEMS Microbiol. Lett. 66:183–186.

    Article  CAS  Google Scholar 

  • Jetten, M.S.M.,A.J.M. Stams, and A. J. B. Zehnder. 1989a. Isolation and characterization of acetyl-coenzyme A synthetase from Methanothrix soehngenii. J. Bacteriol. 171:5430–5435.

    CAS  Google Scholar 

  • Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1989b. Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase of Methanothrix soehngenii. FEBS Lett. 181:437–441.

    CAS  Google Scholar 

  • Karrasch, M., M. Bott, and R. K. Thauer. 1989. Carbonic anhydrase activity in acetate grown Methanosarcina barkeri. Arch. Microbiol. 151:137–142.

    Article  CAS  Google Scholar 

  • Kemner, J. M., J. A. Krzycki, R. C. Prince, and J. G. Zeikus. 1987. Spectroscopic and enzymatic evidence for membrane-bound electron transport carriers and hydrogenase and their relation to cytochrome b function in Methanosarcina barkeri. FEMS Microbiol. Lett. 48:267–272.

    Article  CAS  Google Scholar 

  • Kohler, H. P. E. 1988. Isolation of cobamides from Methanothrix soehngenii: 5-methyl-benzimidazole as the α-ligand of the predominant cobamide. Arch. Microbiol. 150:219–223.

    Article  CAS  Google Scholar 

  • Kohler, H. P. E., and A. J. B. Zehnder. 1984. Carbon monoxide dehydrogenase and acetate thiokinase in Methanothrix soehngenii. FEMS Microbiol. Lett. 21:287–292.

    Article  CAS  Google Scholar 

  • Krzycki, J. A., L. J. Lehman, and J. G. Zeikus. 1985. Acetate Catabolism by Methanosarcina barkeri: evidence for involvement of carbon monoxide dehydrogenase, methyl coenzyme M, and methylreductase. J. Bacteriol. 163:1000–1006.

    PubMed  CAS  Google Scholar 

  • Krzycki, J. A., J. B. Morgan, R. Conrad, and J. G. Zeikus. 1987. Hydrogen metabolism during methanogenesis from acetate by Methanosarcina barkeri. FEMS Microbiol. Lett. 40:193–198.

    Article  CAS  Google Scholar 

  • Krzycki, J. A., L. E. Mortenson, and R. C. Prince. 1989. Paramagnetic centers of carbon monoxide dehydrogenase from aceticlastic Methanosarcina barkeri. J. Biol. Chem. 264:7217–7221.

    CAS  Google Scholar 

  • Krzycki, J. A., and R. C. Prince. 1990. EPR observation of carbon monoxide dehydrogenase, methylreductase and corrinoid in intact Methanosarcina barkeri during methanogenesis from acetate. Biochim. Biophys. Acta. 1015:53–60.

    Article  CAS  Google Scholar 

  • Krzycki, J. A., R. H. Wolkin, and J. G. Zeikus. 1982. Comparison of unitrophic and mixotrophic substrate metabolism by an acetate-adapted strain of Methanosarcina barkeri. J. Bacteriol. 149:247–254.

    CAS  Google Scholar 

  • Krzycki, J. A., and J. G. Zeikus. 1984a. Acetate catabolism by Methanosarcina barkeri: hydrogen-dependent methane production from acetate by a soluble cell protein fraction. FEMS Microbiol. Lett. 25:27–32.

    Article  CAS  Google Scholar 

  • Krzycki, J. A., and J. G. Zeikus. 1984b. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. J. Bacteriol. 158:231–237.

    CAS  Google Scholar 

  • Kühn, W., K. Fiebig, H. Hippe, R. A. Man, B. A. Huser, and G. Gottschalk. 1983. Distrubtion of cytochromes in methanogenic bacteria. FEMS Microbiol. Lett. 20:407–410.

    Article  Google Scholar 

  • Kühn, W., and G. Gottschalk. 1983. Characterization of the cytochromes occurring in Methanosarcina species. Eur. J. Biochem. 135:89–94.

    Article  PubMed  Google Scholar 

  • Kumar, M., and S.W. Ragsdale. 1992. Characterization of the CO binding site of carbon monoxide dehydrogenase from Clostridium thermoaceticum by infrared spectroscopy. J. Am. Chem. Soc. 114:8713–8715.

    Article  CAS  Google Scholar 

  • Ladapo, J., and W. B. Whitman. 1990. Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Proc. Natl. Acad. Sci. USA. 87:5598–5602.

    Article  CAS  Google Scholar 

  • Laufer, K., B. Eikmanns, U. Frimmer, and R. K. Thauer. 1987. Methanogenesis from acetate by Methanosarcina barkeri: catalysis of acetate formation from methyl iodide, CO2, and H2 by the enzyme system involved. Z. Naturforsch. 42c:360–372.

    Google Scholar 

  • Lin, S. K., and B. Jaun. 1991. Coenzyme F430 from methanogenic bacteria: detection of a paramagnetic methylnickel(II) derivative of the pentamethyl ester by 2H-NMR spectroscopy, Helv. Chim. Acta 74:1725–1738.

    Article  CAS  Google Scholar 

  • Lindahl, P. A., E. Münck, and S.W. Ragsdale. 1990a. CO dehydrogenase from Clostridium thermoaceticum. EPR and electrochemical studies in CO2 and argon atmospheres. J. Biol. Chem. 265:3873–3879.

    PubMed  CAS  Google Scholar 

  • Lindahl, P. A., S. W. Ragsdale, and E. Münck. 1990b. Mössbauer study of CO dehydrogenase from Clostridium thermoaceticum. J. Biol. Chem. 265:3880–3888.

    CAS  Google Scholar 

  • Lovley, D. R., and J. G. Ferry. 1985. Production and consumption of H2 during growth of Methanosarcina spp. on acetate. Appl. Environ. Microbiol. 49:247–249.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., R. H. White, and J. G. Ferry. 1984. Identification of methyl coenzyme M as an intermediate in methanogenesis from acetate in Methanosarcina spp. J. Bacteriol. 160:521–525.

    CAS  Google Scholar 

  • Lu, W.-P., S. R. Harder, and S. W. Ragsdale. 1990. Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. J. Biol. Chem. 265:3124–3133.

    CAS  Google Scholar 

  • Lu, W.-P., and S. W. Ragsdale. 1991. Reductive activation of the coenzyme A/acetyl-CoA isotopic exchange reaction catalyzed by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by nitrous oxide and carbon monoxide. J. Biol. Chem. 266:3554–3564.

    PubMed  CAS  Google Scholar 

  • Lundie, L. L., and J. G. Ferry. 1989. Activation of acetate by Methanosarcina thermophila. Purification and characterization of phosphotransacetylase. J. Biol. Chem. 264:18392–18396.

    PubMed  CAS  Google Scholar 

  • Macario, A. J. L., and E. C. De Macario. 1987. Antigenic distinctiveness, heterogeneity, and relationships of Methanothrix spp. J. Bacteriol. 169:4099–4103.

    PubMed  CAS  Google Scholar 

  • Man, R. A. 1980. Isolation and characterization of Methanococcus mazei. Curr. Microbiol. 3:321–326.

    Google Scholar 

  • Mah, R. A., M. R. Smith and L. Baresi. 1978. Studies on an acetate-fermenting strain of Methanosarcina. Sppl. Environ. Microbiol. 35:1174–1184.

    CAS  Google Scholar 

  • Mclnerney, M.J. and M. P. Bryant. 1981. Anaerobic degradation of lactate by syntrophic associations of Methanosarcina barkeri and Desulfovibrio species and effect of H2 on acetate degradation. Appl. Environ. Microbiol. 41:346–354.

    Google Scholar 

  • Min, H., and S. H. Zinder. 1989. Kinetics of acetate utilization by 2 thermophilic acetotrophic methanogens — Methanosarcina sp strain CALS-1 and Methanothrix sp strain CALS-1. Appl. Environ. Microbiol. 55:488–491.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay, B., E. Purwantini, E. C. Demacario, and L. Daniels. 1991. Characterization of a Methanosarcina strain isolated from goat feces, and that grows on H2-CO2 only after adaptation. Curr. Microbiol. 23:165–173.

    Article  CAS  Google Scholar 

  • Murray, P. A., and S. H. Zinder. 1985. Nutritional requirements of Methanosarcina sp. strain TM-1. Appl. Environ. Microbiol. 50:49–55.

    PubMed  CAS  Google Scholar 

  • Nelson, M. J. K., and J. G. Ferry. 1984. Carbon monoxide-dependent methyl coenzyme M methylreductase in acetotrophic Methanosarcina spp. J. Bacteriol. 160:526–532.

    PubMed  CAS  Google Scholar 

  • Nelson, M. J. K., K. C. Terlesky, and J. G. Ferry. 1987. Recent developments on the biochemistry of methanogenesis from acetate, p. 70–76. In van Verseveld, H. W. and J. A. Duine (ed.), Microbial Growth on C-l Compounds. Martinus Nijhoff, Dordrecht.

    Chapter  Google Scholar 

  • Ohtsubo, S., K. Demizu, S. Kohno, I. Miura, T. Ogawa, and H. Fukuda. 1992. Comparison of acetate utilization among strains of an aceticlastic methanogen, Methanothrix soehngenii. Appl. Environ. Microbiol. 58:703–705.

    CAS  Google Scholar 

  • Patel, G. B. 1992. A contrary view of the proposal to assign a neotype strain for Methanothrix soehngenii. Int. J. Syst. Bacteriol. 42:324—326.

    Google Scholar 

  • Patel, G. B., C. Baudet, and B. J. Agnew. 1988. Nutritional requirements for growth of Methanothrix concilii. Can. J. Microbiol. 34:73–81.

    CAS  Google Scholar 

  • Patel, G. B., and G. D. Sprott. 1990. Methanosaeta concilii gen-nov, sp-nov (Methanothrix concilii) and Methanosaeta thermoacetophila nom-rev, comb-nov. Int. J. of Syst. Bacteriol. 40:79–82.

    Article  Google Scholar 

  • Patel, G. B., and G. D. Sprott. 1991. Cobalt and sodium requirements for methanogenesis in washed cells of Methanosaeta concilii. Can. J. Microbiol. 37:110–115.

    CAS  Google Scholar 

  • Peinemann, S., V. Müller, M. Blaut, and G. Gottschalk. 1988. Bioenergetics of methanogenesis from acetate by Methanosarcina barkeri. J. Bacteriol. 170:1369–1372.

    CAS  Google Scholar 

  • Pine, M. J., and H. A. Barker. 1956. Studies on the methane fermentation. XII. The pathway of hydrogen in the acetate fermentation. J. Bacteriol. 71:644–648.

    PubMed  CAS  Google Scholar 

  • Pine, M. J., and W. Vishniac. 1957. The methane fermentations of acetate and methanol. J. Bacteriol. 73:736–742.

    PubMed  CAS  Google Scholar 

  • Pretorius, W. A. 1972. The effect of formate on the growth of acetate utilizing methanogenic bacteria. Water Res. 6:1213–1217.

    Article  CAS  Google Scholar 

  • Ragsdale, S. W. 1991. Enzymology of the acetyl-CoA pathway of CO2 fixation. CRC Rev. Biochem. Mol. Biol. 26:261–300.

    Article  CAS  Google Scholar 

  • Raybuck, S. A., S. E. Ramer, D. R. Abbanat, J. W. Peters, W. H. Orme-Johnson, J. G. Ferry, and C.T. Walsh. 1991. Demonstration of carbon-carbon bond cleavage of acetyl coenzyme A by using isotopic exchange catalyzed by the CO dehydrogenase complex from acetate-grown Methanosarcina thermophila. J. Bacteriol. 173:929–932.

    CAS  Google Scholar 

  • Robinson, R. W. 1986. Life cycles in the methanogenic archaebacterium Methanosarcina mazei. Appl. Environ. Microbiol. 52:17–27.

    CAS  Google Scholar 

  • Scherer, P. and H. Sahm. 1980. Growth of Methanosarcina barkeri on methanol or acetate in a defined medium. In Proceedings, First International Symposium on Anaerobic Digestion. Proceedings, First International Symposium on Anaerobic Digestion. Stafford, D. A. and Wheatley, B.I. (eds.), Scientific Press, Cardiff, England.

    Google Scholar 

  • Schnellen, C. G. T. P. 1947. Onderzoekingen over der methaangisting. Ph.D. Thesis, Technical University of Delft, Rotterdam, Netherlands.

    Google Scholar 

  • Schwörer, B., and R. K. Thauer. 1991. Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria. Arch. Microbiol. 155:459–465.

    Article  Google Scholar 

  • Silveira, R. G., N. Nishio, and S. Nagai. 1991. Growth characteristics and corrinoid production of Methanosarcina barkeri on methanol-acetate medium. J. Ferm. Bioeng. 71:28–34.

    Article  CAS  Google Scholar 

  • Smith, M. R., and R. A. Man. 1978. Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl. Environ. Microbiol. 36:870–879.

    PubMed  CAS  Google Scholar 

  • Smith, M. R., and R. A. Mah. 1980. Acetate as sole carbon and energy source of growth for Methanosarcina strain 227. Appl. Environ. Microbiol. 39:993–999.

    PubMed  CAS  Google Scholar 

  • Smith, P. H., and R. A. Mah. 1966. Kinetics of acetate metabolism during sludge digestion. Appl. Microbiol. 14:368–371.

    PubMed  CAS  Google Scholar 

  • Söehngen, N. L. 1906. Het ontstaan en verdwijnen van waterstof en methaan onder den invloed van het organisch leven. Ph.D. Thesis, Technical University of Delft, Rotterdam, Netherlands.

    Google Scholar 

  • Sowers, K. R., S. F. Baron, and J. G. Ferry. 1984. Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl. Environ. Microbiol. 47:971–978.

    PubMed  CAS  Google Scholar 

  • Sowers, K. R., and R. P. Gunsalus. 1988. Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila. J. Bacteriol. 170:998–1002.

    CAS  Google Scholar 

  • Sowers, K. R., M. J. Nelson, and J. G. Ferry. 1984. Growth of acetotrophic, methane-producing bacteria in a pH auxostat. Curr. Microbiol. 11:227–230.

    Article  Google Scholar 

  • Stackebrandt, E., E. Seewaldt, W. Ludwig, K.-H. Schleifer, and B. A. Huser. 1982. The phylogenetic position of Methanothrix soehngenii. Elucidated by a modified technique of sequencing oligonucleotides from 16S rRNA. Zbl. Bakt. Hyg., I. Abt. Orig. C3:90–100.

    Google Scholar 

  • Stadtman, T. C. 1967. Methane fermentation. Annu. Rev. Microbiol. 21:121–142.

    Article  PubMed  CAS  Google Scholar 

  • Stadtman, T. C., and H. A. Barker. 1949. Studies on the methane fermentation. VII. Tracer experiments on the mechanism of methane formation. Arch. Biochem. 21:256–264.

    PubMed  CAS  Google Scholar 

  • Stadtman, T. C., and H. A. Barker. 1951. Studies on the methane fermentation IX. The origin of methane in the acetate and methanol fermentation by Methanosarcina. J. Bacteriol. 61:81–86.

    CAS  Google Scholar 

  • Stupperich, E., and B. Krautler. 1988. Pseudo vitamine B12 or 5-hydroxybenzimidazolylcobamide are the corrinoids found in methanogenic bacteria. Arch. Microbiol. 149:268–271.

    Article  CAS  Google Scholar 

  • Terlesky, K. C., M. J. Barber, D. J. Aceti, and J. G. Ferry. 1987. EPR properties of the Ni-Fe-C center in an enzyme complex with carbon monoxide dehydrogenase activity from acetate-grown Methanosarcina thermophila. Evidence that acetyl-CoA is a physiological substrate. J. Biol. Chem. 262:15392–15395.

    PubMed  CAS  Google Scholar 

  • Terlesky, K. C., and J. G. Ferry. 1988a. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:4075–4079.

    CAS  Google Scholar 

  • Terlesky, K. C., and J. G. Ferry. 1988b. Purification and characterization of a ferredoxin from acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:4080–4082.

    CAS  Google Scholar 

  • Terlesky, K. C., M. J. K. Nelson, and J. G. Ferry. 1986. Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing a corrinoid and nickel from acetate-grown Methanosarcina thermophila. J. Bacteriol. 168:1053–1058.

    CAS  Google Scholar 

  • Thauer, R. K., D. Moller-Zinkhan, and A. M. Spormann. 1989. Biochemistry of acetate catabolism in anerobic chemotrophic bacteria. Annu. Rev. Microbiol. 43:43–67.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, I., H.-C. Dubourguier, G. Presier, P. Debeire, and G. Albagnac. 1987. Purification of component C from Methanosarcina mazei and immunolocalization in Methanosarcinaceae. Arch. Microbiol. 148:193–201.

    Article  CAS  Google Scholar 

  • van de Wijingaard, W. M. H., C. van der Drift, and G. D. Vogels. 1988. Involvement of a corrinoid enzyme in methanogenesis from acetate in Methanosarcina barkeri. FEMS Microbiol Lett. 52:165–172.

    Article  Google Scholar 

  • van de Wijingaard, W. M. H., P. Vermey, and C. van der Drift. 1991. Formation of factor 390 by cell extracts of Methanosarcina barkeri. J. Bacteriol. 173:2710–2711.

    Google Scholar 

  • Weimer, P. J., and J. G. Zeikus. 1978. Acetate metabolism in Methanosarcina barkeri. Arch. Microbiol. 119:175–182.

    Article  CAS  Google Scholar 

  • Westermann, P., B. K. Ahring, and R. A. Mah. 1989a. Acetate production by methanogenic bacteria. Appl. Environ. Microbiol. 55:2257–2261.

    PubMed  CAS  Google Scholar 

  • Westermann, P., B. K. Ahring, and R. A. Mah. 1989b. Threshold acetate concentrations for acetate catabolism by aceticlastic methanogenic bacteria. Appl. Environ. Microbiol. 55:514–515.

    PubMed  CAS  Google Scholar 

  • Westermann, P., B. K. Ahring, and R. A. Mah. 1989c. Temperature compensation in Methanosarcina barkeri by modulation of hydrogen and acetate affinity. Appl. Environ. Microbiol. 55:1262–1266.

    PubMed  CAS  Google Scholar 

  • Woese, C. R., O. Kandier, and M. L. Wheelis. 1990. Towards a natural system of organisms. Proposal for the domains archaea, bacteria, and eucarya. Proc. Natl. Acad. Sci. USA 87:4576–4579.

    Article  PubMed  CAS  Google Scholar 

  • Zehnder, A. J. B., B. A. Huser, T. D. Brock, and K. Wuhrmann. 1980. Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 124:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Zeikus, J. G., P. J. Weimer, D. R. Nelson, and L. Daniels. 1975. Bacterial methanogenesis: acetate as a methane precursor in pure culture. Arch. Microbiol. 104:129–134.

    Article  CAS  Google Scholar 

  • Zinder, S. H. 1988. Conversion of acetic acid to methane by thermophiles. In Anaerobic Digestion 1988, Hall, E. R. and P. N. Hobson (eds.), p. 1–12, Pergamon Press.

    Google Scholar 

  • Zinder, S. H. 1990. Conversion of acetic acid to methane by thermophiles. FEMS Microbiol. Rev. 75:125–137.

    Article  CAS  Google Scholar 

  • Zinder, S. H., and T. Anguish. 1992. Carbon Monoxide, hydrogen and formate metabolism during methanogenesis from acetate by thermophilic cultures of Methanosarcina and Methanothrix strains. Appl. Environ. Microbiol. 58:3323–3329.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H., T. Anguish, and A. L. Lobo. 1987. Isolation and characterization of a thermophilic acetotrophic strain of Methanothrix. Arch. Microbiol. 146:315–322.

    Article  Google Scholar 

  • Zinder, S. H., S. C. Cardwell, T. Anguish, M. Lee, and M. Koch. 1984. Methanogenesis in a thermophilic (58°C) anaerobic digestor: Methanothrix sp. as an important aceticlastic methanogen. Appl. Environ. Microbiol. 47:796–807.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H., and A. F. Elias. 1985. Growth substrate effects on acetate and methanol catabolism in Methanosarcina sp. strain TM-1. J. Bacteriol. 163:317–323.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H., and M. Koch. 1984. Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 138:263–272.

    Article  CAS  Google Scholar 

  • Zinder, S. H., and R. A. Mah. 1979. Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2 for methanogenesis. Appl. Environ. Microbiol. 38:996–1008.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H., K. R. Sowers, and J. G. Ferry. 1985. Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. Int. J. Syst. Bacteriol. 35:522–523.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ferry, J.G. (1993). Fermentation of Acetate. In: Ferry, J.G. (eds) Methanogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2391-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2391-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6013-1

  • Online ISBN: 978-1-4615-2391-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics