Skip to main content

Effects of High Arterial Oxygen Tension on Coronary Blood Flow Regulation and Myocardial Oxygen Delivery

  • Chapter
Oxygen Transport to Tissue XV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 345))

Abstract

The effects of high oxygen tension, or hyperoxia,on the control of myocardial blood flow are both complex and controversial. Substantial evidence suggests that high arterial oxygen tension has a direct vasoconstrictor effect (Baron et al.,1990; Bourdeau-Martini et al.,1974; Ishikawa et al.,1984; Lammerant et al.,1969; Sobol et al.,1962), similar to the vasoconstrictor effects oxgyen demonstrates in other tissues (Daugherty et al.,1967; Duling and Pittman,1975; Sullivan and Johnson,1981). It is often difficult, however, to distinguish direct vasoconstrictor effects from other, indirect effects of oxygen which also cause coronary vasoconstriction. For example, increasing arterial oxygen tension causes multiple direct and reflex hemodynamic effects, including reduced heart rate Ganz et al.,1972; Kenmure et al.,1971; Whalen et al.,1965) and decreased ventricular wall tension (Ishikawa et al.,1984; Ishikawa et al.,1982), both of which may reduce myocardial oxygen demand and which may therefore lead to coronary vasoconstriction by metabolic regulation mechanism. Additionally, higher oxygen tension is generally associated with higher oxygen content, so it might expected that when arterial oxygen tension is raised beyond the normal range (raising oxygen content slightly), that the metabolic regulation mechanisms of the heart would induce vasoconstriction, reducing blood flow slightly, but maintaining constant oxygen delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel, F, 1981, Maximal negative dP/dt as an indicator of end of systole. Am J Physiol 240: H676–H679.

    PubMed  CAS  Google Scholar 

  • Baron, J. F., Vicaut, E., Hou, X. and M. Duvelleroy, 1990, Independent role of arterial O2 tension in local control of coronary blood flow. Am J Physiol 258: H1388–H1394.

    CAS  Google Scholar 

  • Bertuglia, S., Colantuoni, A., Coppini, G. and M. Intaglietta, 1991, Hypoxia-or hyperoxia-induced changes in arteriolar vasomotion in skeletal muscle microcirculation. Am J Physiol 260:H362–H372.

    CAS  Google Scholar 

  • Bourdeau-Martini, J., Odoroff, C.L. and Honig, C.R., 1974, Dual effect of oxygen on magnitude and uniformity of coronary intercapillary distance. Am J Physiol 226: 800–810.

    PubMed  CAS  Google Scholar 

  • Cason, B. A., Verrier, E.D., London, M.J., Mangano, D.T. and Hickey, R.F, 1987, Effects of isoflurane and halothane on coronary vascular resistance and collateral myocardial blood flow: Their capacity to induce coronary steal. Anesthesiology 67(5): 665–675.

    Article  PubMed  CAS  Google Scholar 

  • Daugherty, J., Scott, J.B., Dabney, J.M. and Haddy, F.J., 1967, Local effects of O2 and CO2 on limb, renal, and coronary vascular resistances. Am J Physiol 213: 1102–1110.

    PubMed  Google Scholar 

  • Duling, B. and Pittman, R., 1975, Oxygen tension: dependent or independent variable in local control of blood flow? Fed Proc 34: 2012–2019.

    PubMed  CAS  Google Scholar 

  • Ganz, W., Donoso, R., Marcus, H. and Swan, H.J.C, 1972, Coronary hemodynamics and myocardial oxygen metabolism during oxygen breathing in patients with and without coronary disease. Circulation 45: 763–768.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, K., Hayashi, T., Kohashi, Y., Otani, S., Kanamasa, K., Yamakado, T., Yashi, M., Osato, S. and Katori, R., 1984, Reduction of left ventricular size following oxygen inhalation in patients with coronary artery disease as measured by biplane coronary cineangiograms. Jpn Circ J 48: 225–232.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, K., Kanamasa, K., Yamakado, K. and Katori, R., 1982, Reduction of left ventricular epicardial segment length by 100% oxygen breathing in open-chest dogs. Tohoku J Exp Med 136: 313–318.

    Article  PubMed  CAS  Google Scholar 

  • Kenmure, A. C. F., Beatson, J.M., Cameron, A.J.V. and Horton, P.W., 1971,Effects of oxygen on myocardial blood flow and metabolism. Cardiovasc Res 5: 483–489.

    Article  PubMed  CAS  Google Scholar 

  • Lammerant, J., Schryver, C.D., Becsei, I., Camphyn, M. and Mertens-Strijthagen, J., 1969, Coronary circulation response to hyperoxia after vagotomy and combined alpha and beta adrenergic receptors blockade in the anesthetized intact dog. Pflugers Arch 308: 185–186.

    Article  PubMed  CAS  Google Scholar 

  • Marcus, M. L., Kerber, R.E., Erhardt, J.C., Falsetti, H.L., Davis, D.E. and Abbound, F.M., 1977, Spatial and temporal heterogeneity of left ventricular perfusion in awake dogs. Am Heart J 94(6): 748–754.

    Article  PubMed  CAS  Google Scholar 

  • Norris, C. P., Barnes, G.E., Smith, E.E. and Granger, H.J., 1979, Autoregulation of superior mesenteric flow fasted and fed dogs. Am J Physiol 237: H174–H177.

    PubMed  CAS  Google Scholar 

  • Sobol, B. J., Wanlass, S.A., Joseph, E.B. and Azarshahy, I., 1962, Alteration of coronary blood flow in the dog by inhalation of 100 percent oxygen. Circ Res 11: 797–802.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, S. M. and Johnson, P.C., 1981, Effect of oxygen on blood flow autoregulation in cat sartorius muscle. Am J Physiol 241: H807–H815.

    PubMed  CAS  Google Scholar 

  • Whalen, R. E., Saltzman, H.A., Holloway, D.H. Jr., McIntosh, H.D., Sieker, H.O. and Brown, I.W., Jr., 1965, Cardiovascular and blood gas responses to hyperbaric oxygenation. Am J Cardiol 15: 638–646.

    Article  CAS  Google Scholar 

  • Wolpers, H. G., Hoeft, A., Korb, H., Lichtlen, P.R. and Heilige, G., 1990, Heterogeneity of myocardial blood flow under normal conditions and its dependence on arterial PO2. Am J Physiol 258: H549–H555.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cason, B.A., Gordon, H.J., Shnier, C.B., Horton, A.F., Hickey, R.P., Hickey, R.F. (1994). Effects of High Arterial Oxygen Tension on Coronary Blood Flow Regulation and Myocardial Oxygen Delivery. In: Vaupel, P., Zander, R., Bruley, D.F. (eds) Oxygen Transport to Tissue XV. Advances in Experimental Medicine and Biology, vol 345. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2468-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2468-7_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6051-3

  • Online ISBN: 978-1-4615-2468-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics